Metamath Proof Explorer


Theorem sssslt1

Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt1 ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐶 <<s 𝐵 )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
2 1 adantr ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐴 ∈ V )
3 simpr ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐶𝐴 )
4 2 3 ssexd ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐶 ∈ V )
5 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
6 5 adantr ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐵 ∈ V )
7 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
8 7 adantr ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐴 No )
9 3 8 sstrd ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐶 No )
10 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
11 10 adantr ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐵 No )
12 ssltsep ( 𝐴 <<s 𝐵 → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
13 ssralv ( 𝐶𝐴 → ( ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀ 𝑥𝐶𝑦𝐵 𝑥 <s 𝑦 ) )
14 12 13 mpan9 ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → ∀ 𝑥𝐶𝑦𝐵 𝑥 <s 𝑦 )
15 9 11 14 3jca ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → ( 𝐶 No 𝐵 No ∧ ∀ 𝑥𝐶𝑦𝐵 𝑥 <s 𝑦 ) )
16 brsslt ( 𝐶 <<s 𝐵 ↔ ( ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐶 No 𝐵 No ∧ ∀ 𝑥𝐶𝑦𝐵 𝑥 <s 𝑦 ) ) )
17 4 6 15 16 syl21anbrc ( ( 𝐴 <<s 𝐵𝐶𝐴 ) → 𝐶 <<s 𝐵 )