Metamath Proof Explorer
Description: Two elements of separated sets obey less than. Deduction form of
ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ssltsepcd.1 |
|
|
|
ssltsepcd.2 |
|
|
|
ssltsepcd.3 |
|
|
Assertion |
ssltsepcd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssltsepcd.1 |
|
2 |
|
ssltsepcd.2 |
|
3 |
|
ssltsepcd.3 |
|
4 |
|
ssltsepc |
|
5 |
1 2 3 4
|
syl3anc |
|