Metamath Proof Explorer


Theorem ssltsepcd

Description: Two elements of separated sets obey less than. Deduction form of ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses ssltsepcd.1 φ A s B
ssltsepcd.2 φ X A
ssltsepcd.3 φ Y B
Assertion ssltsepcd φ X < s Y

Proof

Step Hyp Ref Expression
1 ssltsepcd.1 φ A s B
2 ssltsepcd.2 φ X A
3 ssltsepcd.3 φ Y B
4 ssltsepc A s B X A Y B X < s Y
5 1 2 3 4 syl3anc φ X < s Y