Metamath Proof Explorer


Theorem ssltsepcd

Description: Two elements of separated sets obey less-than. Deduction form of ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses ssltsepcd.1 φAsB
ssltsepcd.2 φXA
ssltsepcd.3 φYB
Assertion ssltsepcd φX<sY

Proof

Step Hyp Ref Expression
1 ssltsepcd.1 φAsB
2 ssltsepcd.2 φXA
3 ssltsepcd.3 φYB
4 ssltsepc AsBXAYBX<sY
5 1 2 3 4 syl3anc φX<sY