Metamath Proof Explorer
Description: Two elements of separated sets obey less than. Deduction form of
ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ssltsepcd.1 |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
|
|
ssltsepcd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
|
ssltsepcd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
Assertion |
ssltsepcd |
⊢ ( 𝜑 → 𝑋 <s 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssltsepcd.1 |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
2 |
|
ssltsepcd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
3 |
|
ssltsepcd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
4 |
|
ssltsepc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 <s 𝑌 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → 𝑋 <s 𝑌 ) |