Metamath Proof Explorer


Theorem ssltsepcd

Description: Two elements of separated sets obey less than. Deduction form of ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses ssltsepcd.1 ( 𝜑𝐴 <<s 𝐵 )
ssltsepcd.2 ( 𝜑𝑋𝐴 )
ssltsepcd.3 ( 𝜑𝑌𝐵 )
Assertion ssltsepcd ( 𝜑𝑋 <s 𝑌 )

Proof

Step Hyp Ref Expression
1 ssltsepcd.1 ( 𝜑𝐴 <<s 𝐵 )
2 ssltsepcd.2 ( 𝜑𝑋𝐴 )
3 ssltsepcd.3 ( 𝜑𝑌𝐵 )
4 ssltsepc ( ( 𝐴 <<s 𝐵𝑋𝐴𝑌𝐵 ) → 𝑋 <s 𝑌 )
5 1 2 3 4 syl3anc ( 𝜑𝑋 <s 𝑌 )