Description: Two elements of separated sets obey less than. (Contributed by Scott Fenton, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssltsepc | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 <s 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsep | ⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) | |
2 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 <s 𝑦 ↔ 𝑋 <s 𝑦 ) ) | |
3 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 <s 𝑦 ↔ 𝑋 <s 𝑌 ) ) | |
4 | 2 3 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → 𝑋 <s 𝑌 ) |
5 | 4 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 <s 𝑌 ) |
6 | 1 5 | sylan | ⊢ ( ( 𝐴 <<s 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 <s 𝑌 ) |
7 | 6 | 3impb | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 <s 𝑌 ) |