Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1 ( 𝜑𝐴 No )
ssltsn.2 ( 𝜑𝐵 No )
ssltsn.3 ( 𝜑𝐴 <s 𝐵 )
Assertion ssltsn ( 𝜑 → { 𝐴 } <<s { 𝐵 } )

Proof

Step Hyp Ref Expression
1 ssltsn.1 ( 𝜑𝐴 No )
2 ssltsn.2 ( 𝜑𝐵 No )
3 ssltsn.3 ( 𝜑𝐴 <s 𝐵 )
4 1 2 ssltsnb ( 𝜑 → ( { 𝐴 } <<s { 𝐵 } ↔ 𝐴 <s 𝐵 ) )
5 3 4 mpbird ( 𝜑 → { 𝐴 } <<s { 𝐵 } )