| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltsnb.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
ssltsnb.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 4 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 5 |
3 4
|
pm3.2i |
⊢ ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) |
| 6 |
|
brsslt |
⊢ ( { 𝐴 } <<s { 𝐵 } ↔ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) ∧ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) ) |
| 7 |
5 6
|
mpbiran |
⊢ ( { 𝐴 } <<s { 𝐵 } ↔ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) |
| 8 |
|
df-3an |
⊢ ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ↔ ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) |
| 9 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦 ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) ) |
| 11 |
10
|
ralsng |
⊢ ( 𝐴 ∈ No → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) ) |
| 13 |
1
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ No ) |
| 14 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ No ) |
| 15 |
13 14
|
jca |
⊢ ( 𝜑 → ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ) |
| 16 |
15
|
biantrurd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) ) |
| 17 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵 ) ) |
| 18 |
17
|
ralsng |
⊢ ( 𝐵 ∈ No → ( ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵 ) ) |
| 19 |
2 18
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵 ) ) |
| 20 |
12 16 19
|
3bitr3d |
⊢ ( 𝜑 → ( ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ↔ 𝐴 <s 𝐵 ) ) |
| 21 |
8 20
|
bitr2id |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) ) |
| 22 |
7 21
|
bitr4id |
⊢ ( 𝜑 → ( { 𝐴 } <<s { 𝐵 } ↔ 𝐴 <s 𝐵 ) ) |