Metamath Proof Explorer


Theorem ssltsnb

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 18-Jan-2026)

Ref Expression
Hypotheses ssltsnb.1 ( 𝜑𝐴 No )
ssltsnb.2 ( 𝜑𝐵 No )
Assertion ssltsnb ( 𝜑 → ( { 𝐴 } <<s { 𝐵 } ↔ 𝐴 <s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssltsnb.1 ( 𝜑𝐴 No )
2 ssltsnb.2 ( 𝜑𝐵 No )
3 snex { 𝐴 } ∈ V
4 snex { 𝐵 } ∈ V
5 3 4 pm3.2i ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V )
6 brsslt ( { 𝐴 } <<s { 𝐵 } ↔ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) ∧ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) )
7 5 6 mpbiran ( { 𝐴 } <<s { 𝐵 } ↔ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) )
8 df-3an ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ↔ ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) )
9 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦𝐴 <s 𝑦 ) )
10 9 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) )
11 10 ralsng ( 𝐴 No → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) )
12 1 11 syl ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦 ) )
13 1 snssd ( 𝜑 → { 𝐴 } ⊆ No )
14 2 snssd ( 𝜑 → { 𝐵 } ⊆ No )
15 13 14 jca ( 𝜑 → ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) )
16 15 biantrurd ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ↔ ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) )
17 breq2 ( 𝑦 = 𝐵 → ( 𝐴 <s 𝑦𝐴 <s 𝐵 ) )
18 17 ralsng ( 𝐵 No → ( ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦𝐴 <s 𝐵 ) )
19 2 18 syl ( 𝜑 → ( ∀ 𝑦 ∈ { 𝐵 } 𝐴 <s 𝑦𝐴 <s 𝐵 ) )
20 12 16 19 3bitr3d ( 𝜑 → ( ( ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ) ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ↔ 𝐴 <s 𝐵 ) )
21 8 20 bitr2id ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( { 𝐴 } ⊆ No ∧ { 𝐵 } ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝑥 <s 𝑦 ) ) )
22 7 21 bitr4id ( 𝜑 → ( { 𝐴 } <<s { 𝐵 } ↔ 𝐴 <s 𝐵 ) )