Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
2 |
|
bdayfo |
⊢ bday : No –onto→ On |
3 |
|
fofun |
⊢ ( bday : No –onto→ On → Fun bday ) |
4 |
2 3
|
ax-mp |
⊢ Fun bday |
5 |
|
simp1r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → 𝐴 ∈ 𝑉 ) |
6 |
|
simp2r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → 𝐵 ∈ 𝑊 ) |
7 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
9 |
|
funimaexg |
⊢ ( ( Fun bday ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
10 |
4 8 9
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
11 |
10
|
uniexd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
12 |
|
imassrn |
⊢ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ ran bday |
13 |
|
forn |
⊢ ( bday : No –onto→ On → ran bday = On ) |
14 |
2 13
|
ax-mp |
⊢ ran bday = On |
15 |
12 14
|
sseqtri |
⊢ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ On |
16 |
|
ssorduni |
⊢ ( ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ On → Ord ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
17 |
15 16
|
ax-mp |
⊢ Ord ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) |
18 |
|
elon2 |
⊢ ( ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ↔ ( Ord ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∧ ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) ) |
19 |
17 18
|
mpbiran |
⊢ ( ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ↔ ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
20 |
11 19
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ) |
21 |
|
sucelon |
⊢ ( ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ↔ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ) |
22 |
20 21
|
sylib |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ) |
23 |
|
onsucuni |
⊢ ( ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ On → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
24 |
15 23
|
mp1i |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
25 |
|
noeta |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ∧ ( suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) ) → ∃ 𝑧 ∈ No ( ∀ 𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘ 𝑧 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) ) |
26 |
1 22 24 25
|
syl12anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) → ∃ 𝑧 ∈ No ( ∀ 𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘ 𝑧 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) ) |