Metamath Proof Explorer


Theorem noeta2

Description: A version of noeta with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion noeta2 ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ∃ 𝑧 No ( ∀ 𝑥𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) )
2 bdayfo bday : No onto→ On
3 fofun ( bday : No onto→ On → Fun bday )
4 2 3 ax-mp Fun bday
5 simp1r ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → 𝐴𝑉 )
6 simp2r ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → 𝐵𝑊 )
7 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
8 5 6 7 syl2anc ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( 𝐴𝐵 ) ∈ V )
9 funimaexg ( ( Fun bday ∧ ( 𝐴𝐵 ) ∈ V ) → ( bday “ ( 𝐴𝐵 ) ) ∈ V )
10 4 8 9 sylancr ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴𝐵 ) ) ∈ V )
11 10 uniexd ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴𝐵 ) ) ∈ V )
12 imassrn ( bday “ ( 𝐴𝐵 ) ) ⊆ ran bday
13 forn ( bday : No onto→ On → ran bday = On )
14 2 13 ax-mp ran bday = On
15 12 14 sseqtri ( bday “ ( 𝐴𝐵 ) ) ⊆ On
16 ssorduni ( ( bday “ ( 𝐴𝐵 ) ) ⊆ On → Ord ( bday “ ( 𝐴𝐵 ) ) )
17 15 16 ax-mp Ord ( bday “ ( 𝐴𝐵 ) )
18 elon2 ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ ( Ord ( bday “ ( 𝐴𝐵 ) ) ∧ ( bday “ ( 𝐴𝐵 ) ) ∈ V ) )
19 17 18 mpbiran ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ ( bday “ ( 𝐴𝐵 ) ) ∈ V )
20 11 19 sylibr ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴𝐵 ) ) ∈ On )
21 sucelon ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ suc ( bday “ ( 𝐴𝐵 ) ) ∈ On )
22 20 21 sylib ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → suc ( bday “ ( 𝐴𝐵 ) ) ∈ On )
23 onsucuni ( ( bday “ ( 𝐴𝐵 ) ) ⊆ On → ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) )
24 15 23 mp1i ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) )
25 noeta ( ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ∧ ( suc ( bday “ ( 𝐴𝐵 ) ) ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) ) → ∃ 𝑧 No ( ∀ 𝑥𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )
26 1 22 24 25 syl12anc ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) → ∃ 𝑧 No ( ∀ 𝑥𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )