Metamath Proof Explorer


Theorem bdayfo

Description: The birthday function maps the surreals onto the ordinals. Axiom B of Alling p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011)

Ref Expression
Assertion bdayfo bday : No onto→ On

Proof

Step Hyp Ref Expression
1 dmexg ( 𝑥 No → dom 𝑥 ∈ V )
2 1 rgen 𝑥 No dom 𝑥 ∈ V
3 df-bday bday = ( 𝑥 No ↦ dom 𝑥 )
4 3 mptfng ( ∀ 𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
5 2 4 mpbi bday Fn No
6 3 rnmpt ran bday = { 𝑦 ∣ ∃ 𝑥 No 𝑦 = dom 𝑥 }
7 noxp1o ( 𝑦 ∈ On → ( 𝑦 × { 1o } ) ∈ No )
8 1oex 1o ∈ V
9 8 snnz { 1o } ≠ ∅
10 dmxp ( { 1o } ≠ ∅ → dom ( 𝑦 × { 1o } ) = 𝑦 )
11 9 10 ax-mp dom ( 𝑦 × { 1o } ) = 𝑦
12 11 eqcomi 𝑦 = dom ( 𝑦 × { 1o } )
13 dmeq ( 𝑥 = ( 𝑦 × { 1o } ) → dom 𝑥 = dom ( 𝑦 × { 1o } ) )
14 13 rspceeqv ( ( ( 𝑦 × { 1o } ) ∈ No 𝑦 = dom ( 𝑦 × { 1o } ) ) → ∃ 𝑥 No 𝑦 = dom 𝑥 )
15 7 12 14 sylancl ( 𝑦 ∈ On → ∃ 𝑥 No 𝑦 = dom 𝑥 )
16 nodmon ( 𝑥 No → dom 𝑥 ∈ On )
17 eleq1a ( dom 𝑥 ∈ On → ( 𝑦 = dom 𝑥𝑦 ∈ On ) )
18 16 17 syl ( 𝑥 No → ( 𝑦 = dom 𝑥𝑦 ∈ On ) )
19 18 rexlimiv ( ∃ 𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On )
20 15 19 impbii ( 𝑦 ∈ On ↔ ∃ 𝑥 No 𝑦 = dom 𝑥 )
21 20 abbi2i On = { 𝑦 ∣ ∃ 𝑥 No 𝑦 = dom 𝑥 }
22 6 21 eqtr4i ran bday = On
23 df-fo ( bday : No onto→ On ↔ ( bday Fn No ∧ ran bday = On ) )
24 5 22 23 mpbir2an bday : No onto→ On