| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmexg |
⊢ ( 𝑥 ∈ No → dom 𝑥 ∈ V ) |
| 2 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ No dom 𝑥 ∈ V |
| 3 |
|
df-bday |
⊢ bday = ( 𝑥 ∈ No ↦ dom 𝑥 ) |
| 4 |
3
|
mptfng |
⊢ ( ∀ 𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
| 5 |
2 4
|
mpbi |
⊢ bday Fn No |
| 6 |
3
|
rnmpt |
⊢ ran bday = { 𝑦 ∣ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 } |
| 7 |
|
noxp1o |
⊢ ( 𝑦 ∈ On → ( 𝑦 × { 1o } ) ∈ No ) |
| 8 |
|
1oex |
⊢ 1o ∈ V |
| 9 |
8
|
snnz |
⊢ { 1o } ≠ ∅ |
| 10 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( 𝑦 × { 1o } ) = 𝑦 ) |
| 11 |
9 10
|
ax-mp |
⊢ dom ( 𝑦 × { 1o } ) = 𝑦 |
| 12 |
11
|
eqcomi |
⊢ 𝑦 = dom ( 𝑦 × { 1o } ) |
| 13 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑦 × { 1o } ) → dom 𝑥 = dom ( 𝑦 × { 1o } ) ) |
| 14 |
13
|
rspceeqv |
⊢ ( ( ( 𝑦 × { 1o } ) ∈ No ∧ 𝑦 = dom ( 𝑦 × { 1o } ) ) → ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
| 15 |
7 12 14
|
sylancl |
⊢ ( 𝑦 ∈ On → ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
| 16 |
|
nodmon |
⊢ ( 𝑥 ∈ No → dom 𝑥 ∈ On ) |
| 17 |
|
eleq1a |
⊢ ( dom 𝑥 ∈ On → ( 𝑦 = dom 𝑥 → 𝑦 ∈ On ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ No → ( 𝑦 = dom 𝑥 → 𝑦 ∈ On ) ) |
| 19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On ) |
| 20 |
15 19
|
impbii |
⊢ ( 𝑦 ∈ On ↔ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
| 21 |
20
|
eqabi |
⊢ On = { 𝑦 ∣ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 } |
| 22 |
6 21
|
eqtr4i |
⊢ ran bday = On |
| 23 |
|
df-fo |
⊢ ( bday : No –onto→ On ↔ ( bday Fn No ∧ ran bday = On ) ) |
| 24 |
5 22 23
|
mpbir2an |
⊢ bday : No –onto→ On |