Step |
Hyp |
Ref |
Expression |
1 |
|
dmexg |
⊢ ( 𝑥 ∈ No → dom 𝑥 ∈ V ) |
2 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ No dom 𝑥 ∈ V |
3 |
|
df-bday |
⊢ bday = ( 𝑥 ∈ No ↦ dom 𝑥 ) |
4 |
3
|
mptfng |
⊢ ( ∀ 𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
5 |
2 4
|
mpbi |
⊢ bday Fn No |
6 |
3
|
rnmpt |
⊢ ran bday = { 𝑦 ∣ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 } |
7 |
|
noxp1o |
⊢ ( 𝑦 ∈ On → ( 𝑦 × { 1o } ) ∈ No ) |
8 |
|
1oex |
⊢ 1o ∈ V |
9 |
8
|
snnz |
⊢ { 1o } ≠ ∅ |
10 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( 𝑦 × { 1o } ) = 𝑦 ) |
11 |
9 10
|
ax-mp |
⊢ dom ( 𝑦 × { 1o } ) = 𝑦 |
12 |
11
|
eqcomi |
⊢ 𝑦 = dom ( 𝑦 × { 1o } ) |
13 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑦 × { 1o } ) → dom 𝑥 = dom ( 𝑦 × { 1o } ) ) |
14 |
13
|
rspceeqv |
⊢ ( ( ( 𝑦 × { 1o } ) ∈ No ∧ 𝑦 = dom ( 𝑦 × { 1o } ) ) → ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
15 |
7 12 14
|
sylancl |
⊢ ( 𝑦 ∈ On → ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
16 |
|
nodmon |
⊢ ( 𝑥 ∈ No → dom 𝑥 ∈ On ) |
17 |
|
eleq1a |
⊢ ( dom 𝑥 ∈ On → ( 𝑦 = dom 𝑥 → 𝑦 ∈ On ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ No → ( 𝑦 = dom 𝑥 → 𝑦 ∈ On ) ) |
19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On ) |
20 |
15 19
|
impbii |
⊢ ( 𝑦 ∈ On ↔ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 ) |
21 |
20
|
abbi2i |
⊢ On = { 𝑦 ∣ ∃ 𝑥 ∈ No 𝑦 = dom 𝑥 } |
22 |
6 21
|
eqtr4i |
⊢ ran bday = On |
23 |
|
df-fo |
⊢ ( bday : No –onto→ On ↔ ( bday Fn No ∧ ran bday = On ) ) |
24 |
5 22 23
|
mpbir2an |
⊢ bday : No –onto→ On |