Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nodmon | ⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno | ⊢ ( 𝐴 ∈ No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) | |
2 | fdm | ⊢ ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 = 𝑥 ) | |
3 | 2 | eleq1d | ⊢ ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( dom 𝐴 ∈ On ↔ 𝑥 ∈ On ) ) |
4 | 3 | biimprcd | ⊢ ( 𝑥 ∈ On → ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 ∈ On ) ) |
5 | 4 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 ∈ On ) |
6 | 1 5 | sylbi | ⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |