Metamath Proof Explorer


Theorem nodmon

Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodmon ( 𝐴 No → dom 𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
2 fdm ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 = 𝑥 )
3 2 eleq1d ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( dom 𝐴 ∈ On ↔ 𝑥 ∈ On ) )
4 3 biimprcd ( 𝑥 ∈ On → ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 ∈ On ) )
5 4 rexlimiv ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → dom 𝐴 ∈ On )
6 1 5 sylbi ( 𝐴 No → dom 𝐴 ∈ On )