Metamath Proof Explorer


Theorem nodmon

Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodmon
|- ( A e. No -> dom A e. On )

Proof

Step Hyp Ref Expression
1 elno
 |-  ( A e. No <-> E. x e. On A : x --> { 1o , 2o } )
2 fdm
 |-  ( A : x --> { 1o , 2o } -> dom A = x )
3 2 eleq1d
 |-  ( A : x --> { 1o , 2o } -> ( dom A e. On <-> x e. On ) )
4 3 biimprcd
 |-  ( x e. On -> ( A : x --> { 1o , 2o } -> dom A e. On ) )
5 4 rexlimiv
 |-  ( E. x e. On A : x --> { 1o , 2o } -> dom A e. On )
6 1 5 sylbi
 |-  ( A e. No -> dom A e. On )