Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nodmon | |- ( A e. No -> dom A e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno | |- ( A e. No <-> E. x e. On A : x --> { 1o , 2o } ) |
|
| 2 | fdm | |- ( A : x --> { 1o , 2o } -> dom A = x ) |
|
| 3 | 2 | eleq1d | |- ( A : x --> { 1o , 2o } -> ( dom A e. On <-> x e. On ) ) |
| 4 | 3 | biimprcd | |- ( x e. On -> ( A : x --> { 1o , 2o } -> dom A e. On ) ) |
| 5 | 4 | rexlimiv | |- ( E. x e. On A : x --> { 1o , 2o } -> dom A e. On ) |
| 6 | 1 5 | sylbi | |- ( A e. No -> dom A e. On ) |