Metamath Proof Explorer


Theorem elno

Description: Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011)

Ref Expression
Assertion elno
|- ( A e. No <-> E. x e. On A : x --> { 1o , 2o } )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. No -> A e. _V )
2 fex
 |-  ( ( A : x --> { 1o , 2o } /\ x e. On ) -> A e. _V )
3 2 ancoms
 |-  ( ( x e. On /\ A : x --> { 1o , 2o } ) -> A e. _V )
4 3 rexlimiva
 |-  ( E. x e. On A : x --> { 1o , 2o } -> A e. _V )
5 feq1
 |-  ( f = A -> ( f : x --> { 1o , 2o } <-> A : x --> { 1o , 2o } ) )
6 5 rexbidv
 |-  ( f = A -> ( E. x e. On f : x --> { 1o , 2o } <-> E. x e. On A : x --> { 1o , 2o } ) )
7 df-no
 |-  No = { f | E. x e. On f : x --> { 1o , 2o } }
8 6 7 elab2g
 |-  ( A e. _V -> ( A e. No <-> E. x e. On A : x --> { 1o , 2o } ) )
9 1 4 8 pm5.21nii
 |-  ( A e. No <-> E. x e. On A : x --> { 1o , 2o } )