Metamath Proof Explorer


Theorem elno

Description: Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011)

Ref Expression
Assertion elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 No 𝐴 ∈ V )
2 fex ( ( 𝐴 : 𝑥 ⟶ { 1o , 2o } ∧ 𝑥 ∈ On ) → 𝐴 ∈ V )
3 2 ancoms ( ( 𝑥 ∈ On ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) → 𝐴 ∈ V )
4 3 rexlimiva ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → 𝐴 ∈ V )
5 feq1 ( 𝑓 = 𝐴 → ( 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
6 5 rexbidv ( 𝑓 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
7 df-no No = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } }
8 6 7 elab2g ( 𝐴 ∈ V → ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
9 1 4 8 pm5.21nii ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )