Metamath Proof Explorer


Theorem sltval

Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011)

Ref Expression
Assertion sltval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑓 = 𝐴 → ( 𝑓 No 𝐴 No ) )
2 1 anbi1d ( 𝑓 = 𝐴 → ( ( 𝑓 No 𝑔 No ) ↔ ( 𝐴 No 𝑔 No ) ) )
3 fveq1 ( 𝑓 = 𝐴 → ( 𝑓𝑦 ) = ( 𝐴𝑦 ) )
4 3 eqeq1d ( 𝑓 = 𝐴 → ( ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ↔ ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ) )
5 4 ralbidv ( 𝑓 = 𝐴 → ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ↔ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ) )
6 fveq1 ( 𝑓 = 𝐴 → ( 𝑓𝑥 ) = ( 𝐴𝑥 ) )
7 6 breq1d ( 𝑓 = 𝐴 → ( ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ↔ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) )
8 5 7 anbi12d ( 𝑓 = 𝐴 → ( ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ↔ ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) )
9 8 rexbidv ( 𝑓 = 𝐴 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) )
10 2 9 anbi12d ( 𝑓 = 𝐴 → ( ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) ↔ ( ( 𝐴 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) ) )
11 eleq1 ( 𝑔 = 𝐵 → ( 𝑔 No 𝐵 No ) )
12 11 anbi2d ( 𝑔 = 𝐵 → ( ( 𝐴 No 𝑔 No ) ↔ ( 𝐴 No 𝐵 No ) ) )
13 fveq1 ( 𝑔 = 𝐵 → ( 𝑔𝑦 ) = ( 𝐵𝑦 ) )
14 13 eqeq2d ( 𝑔 = 𝐵 → ( ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ↔ ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) )
15 14 ralbidv ( 𝑔 = 𝐵 → ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ↔ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) )
16 fveq1 ( 𝑔 = 𝐵 → ( 𝑔𝑥 ) = ( 𝐵𝑥 ) )
17 16 breq2d ( 𝑔 = 𝐵 → ( ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ↔ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
18 15 17 anbi12d ( 𝑔 = 𝐵 → ( ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ↔ ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )
19 18 rexbidv ( 𝑔 = 𝐵 → ( ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )
20 12 19 anbi12d ( 𝑔 = 𝐵 → ( ( ( 𝐴 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) ↔ ( ( 𝐴 No 𝐵 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) ) )
21 df-slt <s = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) }
22 10 20 21 brabg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 No 𝐵 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) ) )
23 22 bianabs ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )