Metamath Proof Explorer


Definition df-slt

Description: Next, we introduce surreal less-than, a comparison relationship over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011)

Ref Expression
Assertion df-slt <s = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslt <s
1 vf 𝑓
2 vg 𝑔
3 1 cv 𝑓
4 csur No
5 3 4 wcel 𝑓 No
6 2 cv 𝑔
7 6 4 wcel 𝑔 No
8 5 7 wa ( 𝑓 No 𝑔 No )
9 vx 𝑥
10 con0 On
11 vy 𝑦
12 9 cv 𝑥
13 11 cv 𝑦
14 13 3 cfv ( 𝑓𝑦 )
15 13 6 cfv ( 𝑔𝑦 )
16 14 15 wceq ( 𝑓𝑦 ) = ( 𝑔𝑦 )
17 16 11 12 wral 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 )
18 12 3 cfv ( 𝑓𝑥 )
19 c1o 1o
20 c0
21 19 20 cop ⟨ 1o , ∅ ⟩
22 c2o 2o
23 19 22 cop ⟨ 1o , 2o
24 20 22 cop ⟨ ∅ , 2o
25 21 23 24 ctp { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ }
26 12 6 cfv ( 𝑔𝑥 )
27 18 26 25 wbr ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 )
28 17 27 wa ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) )
29 28 9 10 wrex 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) )
30 8 29 wa ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) )
31 30 1 2 copab { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) }
32 0 31 wceq <s = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) }