Step |
Hyp |
Ref |
Expression |
0 |
|
cslt |
|- |
1 |
|
vf |
|- f |
2 |
|
vg |
|- g |
3 |
1
|
cv |
|- f |
4 |
|
csur |
|- No |
5 |
3 4
|
wcel |
|- f e. No |
6 |
2
|
cv |
|- g |
7 |
6 4
|
wcel |
|- g e. No |
8 |
5 7
|
wa |
|- ( f e. No /\ g e. No ) |
9 |
|
vx |
|- x |
10 |
|
con0 |
|- On |
11 |
|
vy |
|- y |
12 |
9
|
cv |
|- x |
13 |
11
|
cv |
|- y |
14 |
13 3
|
cfv |
|- ( f ` y ) |
15 |
13 6
|
cfv |
|- ( g ` y ) |
16 |
14 15
|
wceq |
|- ( f ` y ) = ( g ` y ) |
17 |
16 11 12
|
wral |
|- A. y e. x ( f ` y ) = ( g ` y ) |
18 |
12 3
|
cfv |
|- ( f ` x ) |
19 |
|
c1o |
|- 1o |
20 |
|
c0 |
|- (/) |
21 |
19 20
|
cop |
|- <. 1o , (/) >. |
22 |
|
c2o |
|- 2o |
23 |
19 22
|
cop |
|- <. 1o , 2o >. |
24 |
20 22
|
cop |
|- <. (/) , 2o >. |
25 |
21 23 24
|
ctp |
|- { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } |
26 |
12 6
|
cfv |
|- ( g ` x ) |
27 |
18 26 25
|
wbr |
|- ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) |
28 |
17 27
|
wa |
|- ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) |
29 |
28 9 10
|
wrex |
|- E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) |
30 |
8 29
|
wa |
|- ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) |
31 |
30 1 2
|
copab |
|- { <. f , g >. | ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) } |
32 |
0 31
|
wceq |
|- . | ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) } |