Metamath Proof Explorer


Definition df-slt

Description: Next, we introduce surreal less-than, a comparison relation over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011)

Ref Expression
Assertion df-slt <s=fg|fNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslt class<s
1 vf setvarf
2 vg setvarg
3 1 cv setvarf
4 csur classNo
5 3 4 wcel wfffNo
6 2 cv setvarg
7 6 4 wcel wffgNo
8 5 7 wa wfffNogNo
9 vx setvarx
10 con0 classOn
11 vy setvary
12 9 cv setvarx
13 11 cv setvary
14 13 3 cfv classfy
15 13 6 cfv classgy
16 14 15 wceq wfffy=gy
17 16 11 12 wral wffyxfy=gy
18 12 3 cfv classfx
19 c1o class1𝑜
20 c0 class
21 19 20 cop class1𝑜
22 c2o class2𝑜
23 19 22 cop class1𝑜2𝑜
24 20 22 cop class2𝑜
25 21 23 24 ctp class1𝑜1𝑜2𝑜2𝑜
26 12 6 cfv classgx
27 18 26 25 wbr wfffx1𝑜1𝑜2𝑜2𝑜gx
28 17 27 wa wffyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx
29 28 9 10 wrex wffxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx
30 8 29 wa wfffNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx
31 30 1 2 copab classfg|fNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx
32 0 31 wceq wff<s=fg|fNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx