Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
⊢ 1o ∈ V |
2 |
1
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
3 |
2
|
fconst6 |
⊢ ( 𝐴 × { 1o } ) : 𝐴 ⟶ { 1o , 2o } |
4 |
1
|
snnz |
⊢ { 1o } ≠ ∅ |
5 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( 𝐴 × { 1o } ) = 𝐴 ) |
6 |
4 5
|
ax-mp |
⊢ dom ( 𝐴 × { 1o } ) = 𝐴 |
7 |
6
|
feq2i |
⊢ ( ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } ↔ ( 𝐴 × { 1o } ) : 𝐴 ⟶ { 1o , 2o } ) |
8 |
3 7
|
mpbir |
⊢ ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } |
9 |
8
|
a1i |
⊢ ( 𝐴 ∈ On → ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } ) |
10 |
6
|
eleq1i |
⊢ ( dom ( 𝐴 × { 1o } ) ∈ On ↔ 𝐴 ∈ On ) |
11 |
10
|
biimpri |
⊢ ( 𝐴 ∈ On → dom ( 𝐴 × { 1o } ) ∈ On ) |
12 |
|
elno3 |
⊢ ( ( 𝐴 × { 1o } ) ∈ No ↔ ( ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } ∧ dom ( 𝐴 × { 1o } ) ∈ On ) ) |
13 |
9 11 12
|
sylanbrc |
⊢ ( 𝐴 ∈ On → ( 𝐴 × { 1o } ) ∈ No ) |