Metamath Proof Explorer


Theorem noxp1o

Description: The Cartesian product of an ordinal and { 1o } is a surreal. (Contributed by Scott Fenton, 12-Jun-2011)

Ref Expression
Assertion noxp1o ( 𝐴 ∈ On → ( 𝐴 × { 1o } ) ∈ No )

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 1 prid1 1o ∈ { 1o , 2o }
3 2 fconst6 ( 𝐴 × { 1o } ) : 𝐴 ⟶ { 1o , 2o }
4 1 snnz { 1o } ≠ ∅
5 dmxp ( { 1o } ≠ ∅ → dom ( 𝐴 × { 1o } ) = 𝐴 )
6 4 5 ax-mp dom ( 𝐴 × { 1o } ) = 𝐴
7 6 feq2i ( ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } ↔ ( 𝐴 × { 1o } ) : 𝐴 ⟶ { 1o , 2o } )
8 3 7 mpbir ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o }
9 8 a1i ( 𝐴 ∈ On → ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } )
10 6 eleq1i ( dom ( 𝐴 × { 1o } ) ∈ On ↔ 𝐴 ∈ On )
11 10 biimpri ( 𝐴 ∈ On → dom ( 𝐴 × { 1o } ) ∈ On )
12 elno3 ( ( 𝐴 × { 1o } ) ∈ No ↔ ( ( 𝐴 × { 1o } ) : dom ( 𝐴 × { 1o } ) ⟶ { 1o , 2o } ∧ dom ( 𝐴 × { 1o } ) ∈ On ) )
13 9 11 12 sylanbrc ( 𝐴 ∈ On → ( 𝐴 × { 1o } ) ∈ No )