Step |
Hyp |
Ref |
Expression |
1 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → dom 𝐴 ∈ On ) |
3 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
4 |
|
ordirr |
⊢ ( Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ No → ¬ dom 𝐴 ∈ dom 𝐴 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ¬ dom 𝐴 ∈ dom 𝐴 ) |
7 |
|
ndmfv |
⊢ ( ¬ dom 𝐴 ∈ dom 𝐴 → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
9 |
|
nosgnn0 |
⊢ ¬ ∅ ∈ { 1o , 2o } |
10 |
|
elno3 |
⊢ ( 𝐵 ∈ No ↔ ( 𝐵 : dom 𝐵 ⟶ { 1o , 2o } ∧ dom 𝐵 ∈ On ) ) |
11 |
10
|
simplbi |
⊢ ( 𝐵 ∈ No → 𝐵 : dom 𝐵 ⟶ { 1o , 2o } ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → 𝐵 : dom 𝐵 ⟶ { 1o , 2o } ) |
13 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → dom 𝐴 ∈ dom 𝐵 ) |
14 |
12 13
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ dom 𝐴 ) ∈ { 1o , 2o } ) |
15 |
|
eleq1 |
⊢ ( ( 𝐵 ‘ dom 𝐴 ) = ∅ → ( ( 𝐵 ‘ dom 𝐴 ) ∈ { 1o , 2o } ↔ ∅ ∈ { 1o , 2o } ) ) |
16 |
14 15
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ( ( 𝐵 ‘ dom 𝐴 ) = ∅ → ∅ ∈ { 1o , 2o } ) ) |
17 |
9 16
|
mtoi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ¬ ( 𝐵 ‘ dom 𝐴 ) = ∅ ) |
18 |
17
|
neqned |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ dom 𝐴 ) ≠ ∅ ) |
19 |
18
|
necomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ∅ ≠ ( 𝐵 ‘ dom 𝐴 ) ) |
20 |
8 19
|
eqnetrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ( 𝐴 ‘ dom 𝐴 ) ≠ ( 𝐵 ‘ dom 𝐴 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ dom 𝐴 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ dom 𝐴 ) ) |
23 |
21 22
|
neeq12d |
⊢ ( 𝑥 = dom 𝐴 → ( ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ dom 𝐴 ) ≠ ( 𝐵 ‘ dom 𝐴 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( dom 𝐴 ∈ On ∧ ( 𝐴 ‘ dom 𝐴 ) ≠ ( 𝐵 ‘ dom 𝐴 ) ) → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) |
25 |
2 20 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) |
26 |
|
df-ne |
⊢ ( ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
27 |
26
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
28 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
29 |
27 28
|
bitri |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
30 |
25 29
|
sylib |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |