Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
3 |
2
|
notbii |
⊢ ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
4 |
|
dfral2 |
⊢ ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
5 |
3 4
|
bitr4i |
⊢ ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
6 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
7 |
|
nodmord |
⊢ ( 𝐵 ∈ No → Ord dom 𝐵 ) |
8 |
|
ordtri3or |
⊢ ( ( Ord dom 𝐴 ∧ Ord dom 𝐵 ) → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) |
10 |
|
3orass |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ↔ ( dom 𝐴 ∈ dom 𝐵 ∨ ( dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
11 |
|
or12 |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ ( dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ↔ ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ↔ ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
13 |
9 12
|
sylib |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
14 |
13
|
ord |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ dom 𝐴 = dom 𝐵 → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
15 |
|
noseponlem |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
16 |
15
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 ∈ dom 𝐵 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
17 |
|
noseponlem |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
18 |
|
eqcom |
⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ On ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
20 |
17 19
|
sylnibr |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
21 |
20
|
3expia |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( dom 𝐵 ∈ dom 𝐴 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
22 |
21
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐵 ∈ dom 𝐴 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
23 |
16 22
|
jaod |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
24 |
14 23
|
syld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ dom 𝐴 = dom 𝐵 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
25 |
24
|
con4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → dom 𝐴 = dom 𝐵 ) ) |
26 |
25
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom 𝐴 = dom 𝐵 ) |
27 |
|
ordsson |
⊢ ( Ord dom 𝐴 → dom 𝐴 ⊆ On ) |
28 |
|
ssralv |
⊢ ( dom 𝐴 ⊆ On → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
29 |
6 27 28
|
3syl |
⊢ ( 𝐴 ∈ No → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
31 |
30
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
32 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐴 ) |
34 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐵 ) |
36 |
|
eqfunfv |
⊢ ( ( Fun 𝐴 ∧ Fun 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
37 |
33 35 36
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 = 𝐵 ↔ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
38 |
26 31 37
|
mpbir2and |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → 𝐴 = 𝐵 ) |
39 |
38
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → 𝐴 = 𝐵 ) ) |
40 |
5 39
|
syl5bi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) → 𝐴 = 𝐵 ) ) |
41 |
40
|
necon1ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) ) |
42 |
41
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) |
43 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ) |
44 |
42 43
|
sylib |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ) |