| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
⊢ ( ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 3 |
2
|
notbii |
⊢ ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 4 |
|
dfral2 |
⊢ ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ On ¬ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 6 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
| 7 |
|
nodmord |
⊢ ( 𝐵 ∈ No → Ord dom 𝐵 ) |
| 8 |
|
ordtri3or |
⊢ ( ( Ord dom 𝐴 ∧ Ord dom 𝐵 ) → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) |
| 10 |
|
3orass |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ↔ ( dom 𝐴 ∈ dom 𝐵 ∨ ( dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
| 11 |
|
or12 |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ ( dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ↔ ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
| 12 |
10 11
|
bitri |
⊢ ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ↔ ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
| 13 |
9 12
|
sylib |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 = dom 𝐵 ∨ ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
| 14 |
13
|
ord |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ dom 𝐴 = dom 𝐵 → ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) ) ) |
| 15 |
|
noseponlem |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 16 |
15
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐴 ∈ dom 𝐵 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 17 |
|
noseponlem |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 18 |
|
eqcom |
⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 19 |
18
|
ralbii |
⊢ ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ On ( 𝐵 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 20 |
17 19
|
sylnibr |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 21 |
20
|
3expia |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( dom 𝐵 ∈ dom 𝐴 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 22 |
21
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( dom 𝐵 ∈ dom 𝐴 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 23 |
16 22
|
jaod |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴 ) → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 24 |
14 23
|
syld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ dom 𝐴 = dom 𝐵 → ¬ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 25 |
24
|
con4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → dom 𝐴 = dom 𝐵 ) ) |
| 26 |
25
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom 𝐴 = dom 𝐵 ) |
| 27 |
|
ordsson |
⊢ ( Ord dom 𝐴 → dom 𝐴 ⊆ On ) |
| 28 |
|
ssralv |
⊢ ( dom 𝐴 ⊆ On → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 29 |
6 27 28
|
3syl |
⊢ ( 𝐴 ∈ No → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 31 |
30
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 32 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐴 ) |
| 34 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
| 35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐵 ) |
| 36 |
|
eqfunfv |
⊢ ( ( Fun 𝐴 ∧ Fun 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 37 |
33 35 36
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 = 𝐵 ↔ ( dom 𝐴 = dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐴 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 38 |
26 31 37
|
mpbir2and |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → 𝐴 = 𝐵 ) |
| 39 |
38
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 40 |
5 39
|
biimtrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 41 |
40
|
necon1ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) ) |
| 42 |
41
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ) |
| 43 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ) |
| 44 |
42 43
|
sylib |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ) |