Metamath Proof Explorer


Theorem or12

Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 14-Nov-2012)

Ref Expression
Assertion or12 ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( 𝜓 ∨ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm1.5 ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( 𝜓 ∨ ( 𝜑𝜒 ) ) )
2 pm1.5 ( ( 𝜓 ∨ ( 𝜑𝜒 ) ) → ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
3 1 2 impbii ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( 𝜓 ∨ ( 𝜑𝜒 ) ) )