Metamath Proof Explorer


Theorem nofun

Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nofun ( 𝐴 No → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
2 ffun ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → Fun 𝐴 )
3 2 rexlimivw ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → Fun 𝐴 )
4 1 3 sylbi ( 𝐴 No → Fun 𝐴 )