Metamath Proof Explorer


Theorem nosepon

Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020)

Ref Expression
Assertion nosepon ANoBNoABxOn|AxBxOn

Proof

Step Hyp Ref Expression
1 df-ne AxBx¬Ax=Bx
2 1 rexbii xOnAxBxxOn¬Ax=Bx
3 2 notbii ¬xOnAxBx¬xOn¬Ax=Bx
4 dfral2 xOnAx=Bx¬xOn¬Ax=Bx
5 3 4 bitr4i ¬xOnAxBxxOnAx=Bx
6 nodmord ANoOrddomA
7 nodmord BNoOrddomB
8 ordtri3or OrddomAOrddomBdomAdomBdomA=domBdomBdomA
9 6 7 8 syl2an ANoBNodomAdomBdomA=domBdomBdomA
10 3orass domAdomBdomA=domBdomBdomAdomAdomBdomA=domBdomBdomA
11 or12 domAdomBdomA=domBdomBdomAdomA=domBdomAdomBdomBdomA
12 10 11 bitri domAdomBdomA=domBdomBdomAdomA=domBdomAdomBdomBdomA
13 9 12 sylib ANoBNodomA=domBdomAdomBdomBdomA
14 13 ord ANoBNo¬domA=domBdomAdomBdomBdomA
15 noseponlem ANoBNodomAdomB¬xOnAx=Bx
16 15 3expia ANoBNodomAdomB¬xOnAx=Bx
17 noseponlem BNoANodomBdomA¬xOnBx=Ax
18 eqcom Ax=BxBx=Ax
19 18 ralbii xOnAx=BxxOnBx=Ax
20 17 19 sylnibr BNoANodomBdomA¬xOnAx=Bx
21 20 3expia BNoANodomBdomA¬xOnAx=Bx
22 21 ancoms ANoBNodomBdomA¬xOnAx=Bx
23 16 22 jaod ANoBNodomAdomBdomBdomA¬xOnAx=Bx
24 14 23 syld ANoBNo¬domA=domB¬xOnAx=Bx
25 24 con4d ANoBNoxOnAx=BxdomA=domB
26 25 3impia ANoBNoxOnAx=BxdomA=domB
27 ordsson OrddomAdomAOn
28 ssralv domAOnxOnAx=BxxdomAAx=Bx
29 6 27 28 3syl ANoxOnAx=BxxdomAAx=Bx
30 29 adantr ANoBNoxOnAx=BxxdomAAx=Bx
31 30 3impia ANoBNoxOnAx=BxxdomAAx=Bx
32 nofun ANoFunA
33 32 3ad2ant1 ANoBNoxOnAx=BxFunA
34 nofun BNoFunB
35 34 3ad2ant2 ANoBNoxOnAx=BxFunB
36 eqfunfv FunAFunBA=BdomA=domBxdomAAx=Bx
37 33 35 36 syl2anc ANoBNoxOnAx=BxA=BdomA=domBxdomAAx=Bx
38 26 31 37 mpbir2and ANoBNoxOnAx=BxA=B
39 38 3expia ANoBNoxOnAx=BxA=B
40 5 39 biimtrid ANoBNo¬xOnAxBxA=B
41 40 necon1ad ANoBNoABxOnAxBx
42 41 3impia ANoBNoABxOnAxBx
43 onintrab2 xOnAxBxxOn|AxBxOn
44 42 43 sylib ANoBNoABxOn|AxBxOn