Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nosepon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |
|
2 | 1 | rexbii | |
3 | 2 | notbii | |
4 | dfral2 | |
|
5 | 3 4 | bitr4i | |
6 | nodmord | |
|
7 | nodmord | |
|
8 | ordtri3or | |
|
9 | 6 7 8 | syl2an | |
10 | 3orass | |
|
11 | or12 | |
|
12 | 10 11 | bitri | |
13 | 9 12 | sylib | |
14 | 13 | ord | |
15 | noseponlem | |
|
16 | 15 | 3expia | |
17 | noseponlem | |
|
18 | eqcom | |
|
19 | 18 | ralbii | |
20 | 17 19 | sylnibr | |
21 | 20 | 3expia | |
22 | 21 | ancoms | |
23 | 16 22 | jaod | |
24 | 14 23 | syld | |
25 | 24 | con4d | |
26 | 25 | 3impia | |
27 | ordsson | |
|
28 | ssralv | |
|
29 | 6 27 28 | 3syl | |
30 | 29 | adantr | |
31 | 30 | 3impia | |
32 | nofun | |
|
33 | 32 | 3ad2ant1 | |
34 | nofun | |
|
35 | 34 | 3ad2ant2 | |
36 | eqfunfv | |
|
37 | 33 35 36 | syl2anc | |
38 | 26 31 37 | mpbir2and | |
39 | 38 | 3expia | |
40 | 5 39 | biimtrid | |
41 | 40 | necon1ad | |
42 | 41 | 3impia | |
43 | onintrab2 | |
|
44 | 42 43 | sylib | |