Metamath Proof Explorer


Theorem noseponlem

Description: Lemma for nosepon . Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020)

Ref Expression
Assertion noseponlem ANoBNodomAdomB¬xOnAx=Bx

Proof

Step Hyp Ref Expression
1 nodmon ANodomAOn
2 1 3ad2ant1 ANoBNodomAdomBdomAOn
3 nodmord ANoOrddomA
4 ordirr OrddomA¬domAdomA
5 3 4 syl ANo¬domAdomA
6 5 3ad2ant1 ANoBNodomAdomB¬domAdomA
7 ndmfv ¬domAdomAAdomA=
8 6 7 syl ANoBNodomAdomBAdomA=
9 nosgnn0 ¬1𝑜2𝑜
10 elno3 BNoB:domB1𝑜2𝑜domBOn
11 10 simplbi BNoB:domB1𝑜2𝑜
12 11 3ad2ant2 ANoBNodomAdomBB:domB1𝑜2𝑜
13 simp3 ANoBNodomAdomBdomAdomB
14 12 13 ffvelcdmd ANoBNodomAdomBBdomA1𝑜2𝑜
15 eleq1 BdomA=BdomA1𝑜2𝑜1𝑜2𝑜
16 14 15 syl5ibcom ANoBNodomAdomBBdomA=1𝑜2𝑜
17 9 16 mtoi ANoBNodomAdomB¬BdomA=
18 17 neqned ANoBNodomAdomBBdomA
19 18 necomd ANoBNodomAdomBBdomA
20 8 19 eqnetrd ANoBNodomAdomBAdomABdomA
21 fveq2 x=domAAx=AdomA
22 fveq2 x=domABx=BdomA
23 21 22 neeq12d x=domAAxBxAdomABdomA
24 23 rspcev domAOnAdomABdomAxOnAxBx
25 2 20 24 syl2anc ANoBNodomAdomBxOnAxBx
26 df-ne AxBx¬Ax=Bx
27 26 rexbii xOnAxBxxOn¬Ax=Bx
28 rexnal xOn¬Ax=Bx¬xOnAx=Bx
29 27 28 bitri xOnAxBx¬xOnAx=Bx
30 25 29 sylib ANoBNodomAdomB¬xOnAx=Bx