Step |
Hyp |
Ref |
Expression |
1 |
|
3anan32 |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) ↔ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ∧ dom 𝐴 ∈ On ) ) |
2 |
|
elno2 |
⊢ ( 𝐴 ∈ No ↔ ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
3 |
|
df-f |
⊢ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
4 |
|
funfn |
⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) |
5 |
4
|
anbi1i |
⊢ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
6 |
3 5
|
bitr4i |
⊢ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ∧ dom 𝐴 ∈ On ) ↔ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ∧ dom 𝐴 ∈ On ) ) |
8 |
1 2 7
|
3bitr4i |
⊢ ( 𝐴 ∈ No ↔ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ∧ dom 𝐴 ∈ On ) ) |