Metamath Proof Explorer


Theorem elno3

Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Assertion elno3 ( 𝐴 No ↔ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ∧ dom 𝐴 ∈ On ) )

Proof

Step Hyp Ref Expression
1 3anan32 ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) ↔ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ∧ dom 𝐴 ∈ On ) )
2 elno2 ( 𝐴 No ↔ ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
3 df-f ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
4 funfn ( Fun 𝐴𝐴 Fn dom 𝐴 )
5 4 anbi1i ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
6 3 5 bitr4i ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
7 6 anbi1i ( ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ∧ dom 𝐴 ∈ On ) ↔ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ∧ dom 𝐴 ∈ On ) )
8 1 2 7 3bitr4i ( 𝐴 No ↔ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ∧ dom 𝐴 ∈ On ) )