| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
| 2 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
| 3 |
|
norn |
⊢ ( 𝐴 ∈ No → ran 𝐴 ⊆ { 1o , 2o } ) |
| 4 |
1 2 3
|
3jca |
⊢ ( 𝐴 ∈ No → ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
| 5 |
|
simp2 |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → dom 𝐴 ∈ On ) |
| 6 |
|
simpl |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) → Fun 𝐴 ) |
| 7 |
6
|
funfnd |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) → 𝐴 Fn dom 𝐴 ) |
| 8 |
7
|
anim1i |
⊢ ( ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
| 9 |
8
|
3impa |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
| 10 |
|
df-f |
⊢ ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ) |
| 12 |
|
feq2 |
⊢ ( 𝑥 = dom 𝐴 → ( 𝐴 : 𝑥 ⟶ { 1o , 2o } ↔ 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ) ) |
| 13 |
12
|
rspcev |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ) → ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) |
| 14 |
5 11 13
|
syl2anc |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) |
| 15 |
|
elno |
⊢ ( 𝐴 ∈ No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → 𝐴 ∈ No ) |
| 17 |
4 16
|
impbii |
⊢ ( 𝐴 ∈ No ↔ ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) ) |