Metamath Proof Explorer


Theorem elno2

Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012)

Ref Expression
Assertion elno2 ( 𝐴 No ↔ ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) )

Proof

Step Hyp Ref Expression
1 nofun ( 𝐴 No → Fun 𝐴 )
2 nodmon ( 𝐴 No → dom 𝐴 ∈ On )
3 norn ( 𝐴 No → ran 𝐴 ⊆ { 1o , 2o } )
4 1 2 3 3jca ( 𝐴 No → ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
5 simp2 ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → dom 𝐴 ∈ On )
6 simpl ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) → Fun 𝐴 )
7 6 funfnd ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) → 𝐴 Fn dom 𝐴 )
8 7 anim1i ( ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ) ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
9 8 3impa ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
10 df-f ( 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) )
11 9 10 sylibr ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → 𝐴 : dom 𝐴 ⟶ { 1o , 2o } )
12 feq2 ( 𝑥 = dom 𝐴 → ( 𝐴 : 𝑥 ⟶ { 1o , 2o } ↔ 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ) )
13 12 rspcev ( ( dom 𝐴 ∈ On ∧ 𝐴 : dom 𝐴 ⟶ { 1o , 2o } ) → ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
14 5 11 13 syl2anc ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
15 elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
16 14 15 sylibr ( ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) → 𝐴 No )
17 4 16 impbii ( 𝐴 No ↔ ( Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ { 1o , 2o } ) )