Step |
Hyp |
Ref |
Expression |
1 |
|
nofun |
|- ( A e. No -> Fun A ) |
2 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
3 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
4 |
1 2 3
|
3jca |
|- ( A e. No -> ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) ) |
5 |
|
simp2 |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) -> dom A e. On ) |
6 |
|
simpl |
|- ( ( Fun A /\ dom A e. On ) -> Fun A ) |
7 |
6
|
funfnd |
|- ( ( Fun A /\ dom A e. On ) -> A Fn dom A ) |
8 |
7
|
anim1i |
|- ( ( ( Fun A /\ dom A e. On ) /\ ran A C_ { 1o , 2o } ) -> ( A Fn dom A /\ ran A C_ { 1o , 2o } ) ) |
9 |
8
|
3impa |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) -> ( A Fn dom A /\ ran A C_ { 1o , 2o } ) ) |
10 |
|
df-f |
|- ( A : dom A --> { 1o , 2o } <-> ( A Fn dom A /\ ran A C_ { 1o , 2o } ) ) |
11 |
9 10
|
sylibr |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) -> A : dom A --> { 1o , 2o } ) |
12 |
|
feq2 |
|- ( x = dom A -> ( A : x --> { 1o , 2o } <-> A : dom A --> { 1o , 2o } ) ) |
13 |
12
|
rspcev |
|- ( ( dom A e. On /\ A : dom A --> { 1o , 2o } ) -> E. x e. On A : x --> { 1o , 2o } ) |
14 |
5 11 13
|
syl2anc |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) -> E. x e. On A : x --> { 1o , 2o } ) |
15 |
|
elno |
|- ( A e. No <-> E. x e. On A : x --> { 1o , 2o } ) |
16 |
14 15
|
sylibr |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) -> A e. No ) |
17 |
4 16
|
impbii |
|- ( A e. No <-> ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) ) |