| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3anan32 |
|- ( ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) <-> ( ( Fun A /\ ran A C_ { 1o , 2o } ) /\ dom A e. On ) ) |
| 2 |
|
elno2 |
|- ( A e. No <-> ( Fun A /\ dom A e. On /\ ran A C_ { 1o , 2o } ) ) |
| 3 |
|
df-f |
|- ( A : dom A --> { 1o , 2o } <-> ( A Fn dom A /\ ran A C_ { 1o , 2o } ) ) |
| 4 |
|
funfn |
|- ( Fun A <-> A Fn dom A ) |
| 5 |
4
|
anbi1i |
|- ( ( Fun A /\ ran A C_ { 1o , 2o } ) <-> ( A Fn dom A /\ ran A C_ { 1o , 2o } ) ) |
| 6 |
3 5
|
bitr4i |
|- ( A : dom A --> { 1o , 2o } <-> ( Fun A /\ ran A C_ { 1o , 2o } ) ) |
| 7 |
6
|
anbi1i |
|- ( ( A : dom A --> { 1o , 2o } /\ dom A e. On ) <-> ( ( Fun A /\ ran A C_ { 1o , 2o } ) /\ dom A e. On ) ) |
| 8 |
1 2 7
|
3bitr4i |
|- ( A e. No <-> ( A : dom A --> { 1o , 2o } /\ dom A e. On ) ) |