| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltval |
|- ( ( A e. No /\ B e. No ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
| 2 |
|
fvex |
|- ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 3 |
|
fvex |
|- ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 4 |
2 3
|
brtp |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 5 |
|
1n0 |
|- 1o =/= (/) |
| 6 |
5
|
neii |
|- -. 1o = (/) |
| 7 |
|
eqeq1 |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) <-> 1o = (/) ) ) |
| 8 |
6 7
|
mtbiri |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 9 |
|
fvprc |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 10 |
8 9
|
nsyl2 |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 11 |
10
|
adantr |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 12 |
10
|
adantr |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 13 |
|
2on0 |
|- 2o =/= (/) |
| 14 |
13
|
neii |
|- -. 2o = (/) |
| 15 |
|
eqeq1 |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) <-> 2o = (/) ) ) |
| 16 |
14 15
|
mtbiri |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 17 |
|
fvprc |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 18 |
16 17
|
nsyl2 |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 19 |
18
|
adantl |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 20 |
11 12 19
|
3jaoi |
|- ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 21 |
4 20
|
sylbi |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 22 |
|
onintrab |
|- ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V <-> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 23 |
21 22
|
sylib |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 24 |
23
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 25 |
|
onelon |
|- ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> y e. On ) |
| 26 |
25
|
expcom |
|- ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On -> y e. On ) ) |
| 27 |
24 26
|
syl5 |
|- ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> y e. On ) ) |
| 28 |
|
fveq2 |
|- ( a = y -> ( A ` a ) = ( A ` y ) ) |
| 29 |
|
fveq2 |
|- ( a = y -> ( B ` a ) = ( B ` y ) ) |
| 30 |
28 29
|
neeq12d |
|- ( a = y -> ( ( A ` a ) =/= ( B ` a ) <-> ( A ` y ) =/= ( B ` y ) ) ) |
| 31 |
30
|
onnminsb |
|- ( y e. On -> ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> -. ( A ` y ) =/= ( B ` y ) ) ) |
| 32 |
31
|
com12 |
|- ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( y e. On -> -. ( A ` y ) =/= ( B ` y ) ) ) |
| 33 |
27 32
|
syldc |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> -. ( A ` y ) =/= ( B ` y ) ) ) |
| 34 |
|
df-ne |
|- ( ( A ` y ) =/= ( B ` y ) <-> -. ( A ` y ) = ( B ` y ) ) |
| 35 |
34
|
con2bii |
|- ( ( A ` y ) = ( B ` y ) <-> -. ( A ` y ) =/= ( B ` y ) ) |
| 36 |
33 35
|
imbitrrdi |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` y ) = ( B ` y ) ) ) |
| 37 |
36
|
ralrimiv |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) |
| 38 |
24 37
|
jca |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) ) |
| 39 |
38
|
ex |
|- ( ( A e. No /\ B e. No ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) ) ) |
| 40 |
39
|
impac |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 41 |
|
anass |
|- ( ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) <-> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
| 42 |
40 41
|
sylib |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
| 43 |
|
raleq |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A. y e. x ( A ` y ) = ( B ` y ) <-> A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) ) ) |
| 44 |
|
fveq2 |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` x ) = ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 45 |
|
fveq2 |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( B ` x ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 46 |
44 45
|
breq12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 47 |
43 46
|
anbi12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
| 48 |
47
|
rspcev |
|- ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( B ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) -> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 49 |
42 48
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) -> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 50 |
49
|
ex |
|- ( ( A e. No /\ B e. No ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
| 51 |
|
eqeq12 |
|- ( ( ( A ` x ) = 1o /\ ( B ` x ) = (/) ) -> ( ( A ` x ) = ( B ` x ) <-> 1o = (/) ) ) |
| 52 |
6 51
|
mtbiri |
|- ( ( ( A ` x ) = 1o /\ ( B ` x ) = (/) ) -> -. ( A ` x ) = ( B ` x ) ) |
| 53 |
|
1on |
|- 1o e. On |
| 54 |
|
0elon |
|- (/) e. On |
| 55 |
|
suc11 |
|- ( ( 1o e. On /\ (/) e. On ) -> ( suc 1o = suc (/) <-> 1o = (/) ) ) |
| 56 |
55
|
necon3bid |
|- ( ( 1o e. On /\ (/) e. On ) -> ( suc 1o =/= suc (/) <-> 1o =/= (/) ) ) |
| 57 |
53 54 56
|
mp2an |
|- ( suc 1o =/= suc (/) <-> 1o =/= (/) ) |
| 58 |
5 57
|
mpbir |
|- suc 1o =/= suc (/) |
| 59 |
|
df-2o |
|- 2o = suc 1o |
| 60 |
|
df-1o |
|- 1o = suc (/) |
| 61 |
59 60
|
eqeq12i |
|- ( 2o = 1o <-> suc 1o = suc (/) ) |
| 62 |
58 61
|
nemtbir |
|- -. 2o = 1o |
| 63 |
|
eqeq12 |
|- ( ( ( A ` x ) = 1o /\ ( B ` x ) = 2o ) -> ( ( A ` x ) = ( B ` x ) <-> 1o = 2o ) ) |
| 64 |
|
eqcom |
|- ( 1o = 2o <-> 2o = 1o ) |
| 65 |
63 64
|
bitrdi |
|- ( ( ( A ` x ) = 1o /\ ( B ` x ) = 2o ) -> ( ( A ` x ) = ( B ` x ) <-> 2o = 1o ) ) |
| 66 |
62 65
|
mtbiri |
|- ( ( ( A ` x ) = 1o /\ ( B ` x ) = 2o ) -> -. ( A ` x ) = ( B ` x ) ) |
| 67 |
13
|
nesymi |
|- -. (/) = 2o |
| 68 |
|
eqeq12 |
|- ( ( ( A ` x ) = (/) /\ ( B ` x ) = 2o ) -> ( ( A ` x ) = ( B ` x ) <-> (/) = 2o ) ) |
| 69 |
67 68
|
mtbiri |
|- ( ( ( A ` x ) = (/) /\ ( B ` x ) = 2o ) -> -. ( A ` x ) = ( B ` x ) ) |
| 70 |
52 66 69
|
3jaoi |
|- ( ( ( ( A ` x ) = 1o /\ ( B ` x ) = (/) ) \/ ( ( A ` x ) = 1o /\ ( B ` x ) = 2o ) \/ ( ( A ` x ) = (/) /\ ( B ` x ) = 2o ) ) -> -. ( A ` x ) = ( B ` x ) ) |
| 71 |
|
fvex |
|- ( A ` x ) e. _V |
| 72 |
|
fvex |
|- ( B ` x ) e. _V |
| 73 |
71 72
|
brtp |
|- ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( ( ( A ` x ) = 1o /\ ( B ` x ) = (/) ) \/ ( ( A ` x ) = 1o /\ ( B ` x ) = 2o ) \/ ( ( A ` x ) = (/) /\ ( B ` x ) = 2o ) ) ) |
| 74 |
|
df-ne |
|- ( ( A ` x ) =/= ( B ` x ) <-> -. ( A ` x ) = ( B ` x ) ) |
| 75 |
70 73 74
|
3imtr4i |
|- ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) -> ( A ` x ) =/= ( B ` x ) ) |
| 76 |
|
fveq2 |
|- ( a = x -> ( A ` a ) = ( A ` x ) ) |
| 77 |
|
fveq2 |
|- ( a = x -> ( B ` a ) = ( B ` x ) ) |
| 78 |
76 77
|
neeq12d |
|- ( a = x -> ( ( A ` a ) =/= ( B ` a ) <-> ( A ` x ) =/= ( B ` x ) ) ) |
| 79 |
78
|
elrab |
|- ( x e. { a e. On | ( A ` a ) =/= ( B ` a ) } <-> ( x e. On /\ ( A ` x ) =/= ( B ` x ) ) ) |
| 80 |
79
|
biimpri |
|- ( ( x e. On /\ ( A ` x ) =/= ( B ` x ) ) -> x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 81 |
80
|
adantlr |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) =/= ( B ` x ) ) -> x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 82 |
|
ssrab2 |
|- { a e. On | ( A ` a ) =/= ( B ` a ) } C_ On |
| 83 |
|
ne0i |
|- ( x e. { a e. On | ( A ` a ) =/= ( B ` a ) } -> { a e. On | ( A ` a ) =/= ( B ` a ) } =/= (/) ) |
| 84 |
83
|
adantl |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> { a e. On | ( A ` a ) =/= ( B ` a ) } =/= (/) ) |
| 85 |
|
onint |
|- ( ( { a e. On | ( A ` a ) =/= ( B ` a ) } C_ On /\ { a e. On | ( A ` a ) =/= ( B ` a ) } =/= (/) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 86 |
82 84 85
|
sylancr |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 87 |
|
nfrab1 |
|- F/_ a { a e. On | ( A ` a ) =/= ( B ` a ) } |
| 88 |
87
|
nfint |
|- F/_ a |^| { a e. On | ( A ` a ) =/= ( B ` a ) } |
| 89 |
|
nfcv |
|- F/_ a On |
| 90 |
|
nfcv |
|- F/_ a A |
| 91 |
90 88
|
nffv |
|- F/_ a ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 92 |
|
nfcv |
|- F/_ a B |
| 93 |
92 88
|
nffv |
|- F/_ a ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 94 |
91 93
|
nfne |
|- F/ a ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 95 |
|
fveq2 |
|- ( a = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` a ) = ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 96 |
|
fveq2 |
|- ( a = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( B ` a ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 97 |
95 96
|
neeq12d |
|- ( a = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A ` a ) =/= ( B ` a ) <-> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 98 |
88 89 94 97
|
elrabf |
|- ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. { a e. On | ( A ` a ) =/= ( B ` a ) } <-> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 99 |
98
|
simprbi |
|- ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 100 |
86 99
|
syl |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 101 |
|
df-ne |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) =/= ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 102 |
100 101
|
sylib |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 103 |
|
fveq2 |
|- ( y = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` y ) = ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 104 |
|
fveq2 |
|- ( y = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( B ` y ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 105 |
103 104
|
eqeq12d |
|- ( y = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A ` y ) = ( B ` y ) <-> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 106 |
105
|
rspccv |
|- ( A. y e. x ( A ` y ) = ( B ` y ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. x -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 107 |
106
|
ad2antlr |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. x -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 108 |
102 107
|
mtod |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. x ) |
| 109 |
|
simpll |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> x e. On ) |
| 110 |
|
oninton |
|- ( ( { a e. On | ( A ` a ) =/= ( B ` a ) } C_ On /\ { a e. On | ( A ` a ) =/= ( B ` a ) } =/= (/) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 111 |
82 83 110
|
sylancr |
|- ( x e. { a e. On | ( A ` a ) =/= ( B ` a ) } -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 112 |
111
|
adantl |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
| 113 |
|
ontri1 |
|- ( ( x e. On /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) -> ( x C_ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } <-> -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. x ) ) |
| 114 |
109 112 113
|
syl2anc |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( x C_ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } <-> -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. x ) ) |
| 115 |
108 114
|
mpbird |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> x C_ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 116 |
|
intss1 |
|- ( x e. { a e. On | ( A ` a ) =/= ( B ` a ) } -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ x ) |
| 117 |
116
|
adantl |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ x ) |
| 118 |
115 117
|
eqssd |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ x e. { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 119 |
81 118
|
syldan |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) =/= ( B ` x ) ) -> x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 120 |
75 119
|
sylan2 |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
| 121 |
120
|
fveq2d |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( A ` x ) = ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 122 |
120
|
fveq2d |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( B ` x ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 123 |
121 122
|
breq12d |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 124 |
123
|
biimpd |
|- ( ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 125 |
124
|
ex |
|- ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
| 126 |
125
|
pm2.43d |
|- ( ( x e. On /\ A. y e. x ( A ` y ) = ( B ` y ) ) -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 127 |
126
|
expimpd |
|- ( x e. On -> ( ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 128 |
127
|
rexlimiv |
|- ( E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 129 |
50 128
|
impbid1 |
|- ( ( A e. No /\ B e. No ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
| 130 |
1 129
|
bitr4d |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |