Metamath Proof Explorer


Theorem nofv

Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011)

Ref Expression
Assertion nofv
|- ( A e. No -> ( ( A ` X ) = (/) \/ ( A ` X ) = 1o \/ ( A ` X ) = 2o ) )

Proof

Step Hyp Ref Expression
1 pm2.1
 |-  ( -. X e. dom A \/ X e. dom A )
2 ndmfv
 |-  ( -. X e. dom A -> ( A ` X ) = (/) )
3 2 a1i
 |-  ( A e. No -> ( -. X e. dom A -> ( A ` X ) = (/) ) )
4 nofun
 |-  ( A e. No -> Fun A )
5 norn
 |-  ( A e. No -> ran A C_ { 1o , 2o } )
6 fvelrn
 |-  ( ( Fun A /\ X e. dom A ) -> ( A ` X ) e. ran A )
7 ssel
 |-  ( ran A C_ { 1o , 2o } -> ( ( A ` X ) e. ran A -> ( A ` X ) e. { 1o , 2o } ) )
8 6 7 syl5com
 |-  ( ( Fun A /\ X e. dom A ) -> ( ran A C_ { 1o , 2o } -> ( A ` X ) e. { 1o , 2o } ) )
9 8 impancom
 |-  ( ( Fun A /\ ran A C_ { 1o , 2o } ) -> ( X e. dom A -> ( A ` X ) e. { 1o , 2o } ) )
10 1oex
 |-  1o e. _V
11 2on
 |-  2o e. On
12 11 elexi
 |-  2o e. _V
13 10 12 elpr2
 |-  ( ( A ` X ) e. { 1o , 2o } <-> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) )
14 9 13 syl6ib
 |-  ( ( Fun A /\ ran A C_ { 1o , 2o } ) -> ( X e. dom A -> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) )
15 4 5 14 syl2anc
 |-  ( A e. No -> ( X e. dom A -> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) )
16 3 15 orim12d
 |-  ( A e. No -> ( ( -. X e. dom A \/ X e. dom A ) -> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) )
17 1 16 mpi
 |-  ( A e. No -> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) )
18 3orass
 |-  ( ( ( A ` X ) = (/) \/ ( A ` X ) = 1o \/ ( A ` X ) = 2o ) <-> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) )
19 17 18 sylibr
 |-  ( A e. No -> ( ( A ` X ) = (/) \/ ( A ` X ) = 1o \/ ( A ` X ) = 2o ) )