Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.1 |
|- ( -. X e. dom A \/ X e. dom A ) |
2 |
|
ndmfv |
|- ( -. X e. dom A -> ( A ` X ) = (/) ) |
3 |
2
|
a1i |
|- ( A e. No -> ( -. X e. dom A -> ( A ` X ) = (/) ) ) |
4 |
|
nofun |
|- ( A e. No -> Fun A ) |
5 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
6 |
|
fvelrn |
|- ( ( Fun A /\ X e. dom A ) -> ( A ` X ) e. ran A ) |
7 |
|
ssel |
|- ( ran A C_ { 1o , 2o } -> ( ( A ` X ) e. ran A -> ( A ` X ) e. { 1o , 2o } ) ) |
8 |
6 7
|
syl5com |
|- ( ( Fun A /\ X e. dom A ) -> ( ran A C_ { 1o , 2o } -> ( A ` X ) e. { 1o , 2o } ) ) |
9 |
8
|
impancom |
|- ( ( Fun A /\ ran A C_ { 1o , 2o } ) -> ( X e. dom A -> ( A ` X ) e. { 1o , 2o } ) ) |
10 |
|
1oex |
|- 1o e. _V |
11 |
|
2on |
|- 2o e. On |
12 |
11
|
elexi |
|- 2o e. _V |
13 |
10 12
|
elpr2 |
|- ( ( A ` X ) e. { 1o , 2o } <-> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) |
14 |
9 13
|
syl6ib |
|- ( ( Fun A /\ ran A C_ { 1o , 2o } ) -> ( X e. dom A -> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) |
15 |
4 5 14
|
syl2anc |
|- ( A e. No -> ( X e. dom A -> ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) |
16 |
3 15
|
orim12d |
|- ( A e. No -> ( ( -. X e. dom A \/ X e. dom A ) -> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) ) |
17 |
1 16
|
mpi |
|- ( A e. No -> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) |
18 |
|
3orass |
|- ( ( ( A ` X ) = (/) \/ ( A ` X ) = 1o \/ ( A ` X ) = 2o ) <-> ( ( A ` X ) = (/) \/ ( ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) ) |
19 |
17 18
|
sylibr |
|- ( A e. No -> ( ( A ` X ) = (/) \/ ( A ` X ) = 1o \/ ( A ` X ) = 2o ) ) |