Metamath Proof Explorer


Theorem nofv

Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011)

Ref Expression
Assertion nofv ANoAX=AX=1𝑜AX=2𝑜

Proof

Step Hyp Ref Expression
1 pm2.1 ¬XdomAXdomA
2 ndmfv ¬XdomAAX=
3 2 a1i ANo¬XdomAAX=
4 nofun ANoFunA
5 norn ANoranA1𝑜2𝑜
6 fvelrn FunAXdomAAXranA
7 ssel ranA1𝑜2𝑜AXranAAX1𝑜2𝑜
8 6 7 syl5com FunAXdomAranA1𝑜2𝑜AX1𝑜2𝑜
9 8 impancom FunAranA1𝑜2𝑜XdomAAX1𝑜2𝑜
10 1oex 1𝑜V
11 2on 2𝑜On
12 11 elexi 2𝑜V
13 10 12 elpr2 AX1𝑜2𝑜AX=1𝑜AX=2𝑜
14 9 13 imbitrdi FunAranA1𝑜2𝑜XdomAAX=1𝑜AX=2𝑜
15 4 5 14 syl2anc ANoXdomAAX=1𝑜AX=2𝑜
16 3 15 orim12d ANo¬XdomAXdomAAX=AX=1𝑜AX=2𝑜
17 1 16 mpi ANoAX=AX=1𝑜AX=2𝑜
18 3orass AX=AX=1𝑜AX=2𝑜AX=AX=1𝑜AX=2𝑜
19 17 18 sylibr ANoAX=AX=1𝑜AX=2𝑜