Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.1 |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴 ) |
2 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ No → ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑋 ) = ∅ ) ) |
4 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
5 |
|
norn |
⊢ ( 𝐴 ∈ No → ran 𝐴 ⊆ { 1o , 2o } ) |
6 |
|
fvelrn |
⊢ ( ( Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴 ) → ( 𝐴 ‘ 𝑋 ) ∈ ran 𝐴 ) |
7 |
|
ssel |
⊢ ( ran 𝐴 ⊆ { 1o , 2o } → ( ( 𝐴 ‘ 𝑋 ) ∈ ran 𝐴 → ( 𝐴 ‘ 𝑋 ) ∈ { 1o , 2o } ) ) |
8 |
6 7
|
syl5com |
⊢ ( ( Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴 ) → ( ran 𝐴 ⊆ { 1o , 2o } → ( 𝐴 ‘ 𝑋 ) ∈ { 1o , 2o } ) ) |
9 |
8
|
impancom |
⊢ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝑋 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑋 ) ∈ { 1o , 2o } ) ) |
10 |
|
1oex |
⊢ 1o ∈ V |
11 |
|
2on |
⊢ 2o ∈ On |
12 |
11
|
elexi |
⊢ 2o ∈ V |
13 |
10 12
|
elpr2 |
⊢ ( ( 𝐴 ‘ 𝑋 ) ∈ { 1o , 2o } ↔ ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |
14 |
9 13
|
syl6ib |
⊢ ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝑋 ∈ dom 𝐴 → ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) ) |
15 |
4 5 14
|
syl2anc |
⊢ ( 𝐴 ∈ No → ( 𝑋 ∈ dom 𝐴 → ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) ) |
16 |
3 15
|
orim12d |
⊢ ( 𝐴 ∈ No → ( ( ¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴 ) → ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) ) ) |
17 |
1 16
|
mpi |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) ) |
18 |
|
3orass |
⊢ ( ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ↔ ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |