Metamath Proof Explorer


Theorem nofv

Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011)

Ref Expression
Assertion nofv ( 𝐴 No → ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) )

Proof

Step Hyp Ref Expression
1 pm2.1 ( ¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴 )
2 ndmfv ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴𝑋 ) = ∅ )
3 2 a1i ( 𝐴 No → ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴𝑋 ) = ∅ ) )
4 nofun ( 𝐴 No → Fun 𝐴 )
5 norn ( 𝐴 No → ran 𝐴 ⊆ { 1o , 2o } )
6 fvelrn ( ( Fun 𝐴𝑋 ∈ dom 𝐴 ) → ( 𝐴𝑋 ) ∈ ran 𝐴 )
7 ssel ( ran 𝐴 ⊆ { 1o , 2o } → ( ( 𝐴𝑋 ) ∈ ran 𝐴 → ( 𝐴𝑋 ) ∈ { 1o , 2o } ) )
8 6 7 syl5com ( ( Fun 𝐴𝑋 ∈ dom 𝐴 ) → ( ran 𝐴 ⊆ { 1o , 2o } → ( 𝐴𝑋 ) ∈ { 1o , 2o } ) )
9 8 impancom ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝑋 ∈ dom 𝐴 → ( 𝐴𝑋 ) ∈ { 1o , 2o } ) )
10 1oex 1o ∈ V
11 2on 2o ∈ On
12 11 elexi 2o ∈ V
13 10 12 elpr2 ( ( 𝐴𝑋 ) ∈ { 1o , 2o } ↔ ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) )
14 9 13 syl6ib ( ( Fun 𝐴 ∧ ran 𝐴 ⊆ { 1o , 2o } ) → ( 𝑋 ∈ dom 𝐴 → ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ) )
15 4 5 14 syl2anc ( 𝐴 No → ( 𝑋 ∈ dom 𝐴 → ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ) )
16 3 15 orim12d ( 𝐴 No → ( ( ¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴 ) → ( ( 𝐴𝑋 ) = ∅ ∨ ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ) ) )
17 1 16 mpi ( 𝐴 No → ( ( 𝐴𝑋 ) = ∅ ∨ ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ) )
18 3orass ( ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ↔ ( ( 𝐴𝑋 ) = ∅ ∨ ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ) )
19 17 18 sylibr ( 𝐴 No → ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) )