Metamath Proof Explorer


Theorem sltval2

Description: Alternate expression for surreal less than. Two surreals obey surreal less than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011)

Ref Expression
Assertion sltval2 A No B No A < s B A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a

Proof

Step Hyp Ref Expression
1 sltval A No B No A < s B x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
2 fvex A a On | A a B a V
3 fvex B a On | A a B a V
4 2 3 brtp A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a A a On | A a B a = 1 𝑜 B a On | A a B a = A a On | A a B a = 1 𝑜 B a On | A a B a = 2 𝑜 A a On | A a B a = B a On | A a B a = 2 𝑜
5 1n0 1 𝑜
6 5 neii ¬ 1 𝑜 =
7 eqeq1 A a On | A a B a = 1 𝑜 A a On | A a B a = 1 𝑜 =
8 6 7 mtbiri A a On | A a B a = 1 𝑜 ¬ A a On | A a B a =
9 fvprc ¬ a On | A a B a V A a On | A a B a =
10 8 9 nsyl2 A a On | A a B a = 1 𝑜 a On | A a B a V
11 10 adantr A a On | A a B a = 1 𝑜 B a On | A a B a = a On | A a B a V
12 10 adantr A a On | A a B a = 1 𝑜 B a On | A a B a = 2 𝑜 a On | A a B a V
13 2on0 2 𝑜
14 13 neii ¬ 2 𝑜 =
15 eqeq1 B a On | A a B a = 2 𝑜 B a On | A a B a = 2 𝑜 =
16 14 15 mtbiri B a On | A a B a = 2 𝑜 ¬ B a On | A a B a =
17 fvprc ¬ a On | A a B a V B a On | A a B a =
18 16 17 nsyl2 B a On | A a B a = 2 𝑜 a On | A a B a V
19 18 adantl A a On | A a B a = B a On | A a B a = 2 𝑜 a On | A a B a V
20 11 12 19 3jaoi A a On | A a B a = 1 𝑜 B a On | A a B a = A a On | A a B a = 1 𝑜 B a On | A a B a = 2 𝑜 A a On | A a B a = B a On | A a B a = 2 𝑜 a On | A a B a V
21 4 20 sylbi A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a V
22 onintrab a On | A a B a V a On | A a B a On
23 21 22 sylib A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On
24 23 adantl A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On
25 onelon a On | A a B a On y a On | A a B a y On
26 25 expcom y a On | A a B a a On | A a B a On y On
27 24 26 syl5 y a On | A a B a A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a y On
28 fveq2 a = y A a = A y
29 fveq2 a = y B a = B y
30 28 29 neeq12d a = y A a B a A y B y
31 30 onnminsb y On y a On | A a B a ¬ A y B y
32 31 com12 y a On | A a B a y On ¬ A y B y
33 27 32 syldc A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a y a On | A a B a ¬ A y B y
34 df-ne A y B y ¬ A y = B y
35 34 con2bii A y = B y ¬ A y B y
36 33 35 syl6ibr A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a y a On | A a B a A y = B y
37 36 ralrimiv A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a y a On | A a B a A y = B y
38 24 37 jca A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On y a On | A a B a A y = B y
39 38 ex A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On y a On | A a B a A y = B y
40 39 impac A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
41 anass a On | A a B a On y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
42 40 41 sylib A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a a On | A a B a On y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
43 raleq x = a On | A a B a y x A y = B y y a On | A a B a A y = B y
44 fveq2 x = a On | A a B a A x = A a On | A a B a
45 fveq2 x = a On | A a B a B x = B a On | A a B a
46 44 45 breq12d x = a On | A a B a A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
47 43 46 anbi12d x = a On | A a B a y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
48 47 rspcev a On | A a B a On y a On | A a B a A y = B y A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
49 42 48 syl A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
50 49 ex A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
51 eqeq12 A x = 1 𝑜 B x = A x = B x 1 𝑜 =
52 6 51 mtbiri A x = 1 𝑜 B x = ¬ A x = B x
53 1on 1 𝑜 On
54 0elon On
55 suc11 1 𝑜 On On suc 1 𝑜 = suc 1 𝑜 =
56 55 necon3bid 1 𝑜 On On suc 1 𝑜 suc 1 𝑜
57 53 54 56 mp2an suc 1 𝑜 suc 1 𝑜
58 5 57 mpbir suc 1 𝑜 suc
59 df-2o 2 𝑜 = suc 1 𝑜
60 df-1o 1 𝑜 = suc
61 59 60 eqeq12i 2 𝑜 = 1 𝑜 suc 1 𝑜 = suc
62 58 61 nemtbir ¬ 2 𝑜 = 1 𝑜
63 eqeq12 A x = 1 𝑜 B x = 2 𝑜 A x = B x 1 𝑜 = 2 𝑜
64 eqcom 1 𝑜 = 2 𝑜 2 𝑜 = 1 𝑜
65 63 64 bitrdi A x = 1 𝑜 B x = 2 𝑜 A x = B x 2 𝑜 = 1 𝑜
66 62 65 mtbiri A x = 1 𝑜 B x = 2 𝑜 ¬ A x = B x
67 13 nesymi ¬ = 2 𝑜
68 eqeq12 A x = B x = 2 𝑜 A x = B x = 2 𝑜
69 67 68 mtbiri A x = B x = 2 𝑜 ¬ A x = B x
70 52 66 69 3jaoi A x = 1 𝑜 B x = A x = 1 𝑜 B x = 2 𝑜 A x = B x = 2 𝑜 ¬ A x = B x
71 fvex A x V
72 fvex B x V
73 71 72 brtp A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x = 1 𝑜 B x = A x = 1 𝑜 B x = 2 𝑜 A x = B x = 2 𝑜
74 df-ne A x B x ¬ A x = B x
75 70 73 74 3imtr4i A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x B x
76 fveq2 a = x A a = A x
77 fveq2 a = x B a = B x
78 76 77 neeq12d a = x A a B a A x B x
79 78 elrab x a On | A a B a x On A x B x
80 79 biimpri x On A x B x x a On | A a B a
81 80 adantlr x On y x A y = B y A x B x x a On | A a B a
82 ssrab2 a On | A a B a On
83 ne0i x a On | A a B a a On | A a B a
84 83 adantl x On y x A y = B y x a On | A a B a a On | A a B a
85 onint a On | A a B a On a On | A a B a a On | A a B a a On | A a B a
86 82 84 85 sylancr x On y x A y = B y x a On | A a B a a On | A a B a a On | A a B a
87 nfrab1 _ a a On | A a B a
88 87 nfint _ a a On | A a B a
89 nfcv _ a On
90 nfcv _ a A
91 90 88 nffv _ a A a On | A a B a
92 nfcv _ a B
93 92 88 nffv _ a B a On | A a B a
94 91 93 nfne a A a On | A a B a B a On | A a B a
95 fveq2 a = a On | A a B a A a = A a On | A a B a
96 fveq2 a = a On | A a B a B a = B a On | A a B a
97 95 96 neeq12d a = a On | A a B a A a B a A a On | A a B a B a On | A a B a
98 88 89 94 97 elrabf a On | A a B a a On | A a B a a On | A a B a On A a On | A a B a B a On | A a B a
99 98 simprbi a On | A a B a a On | A a B a A a On | A a B a B a On | A a B a
100 86 99 syl x On y x A y = B y x a On | A a B a A a On | A a B a B a On | A a B a
101 df-ne A a On | A a B a B a On | A a B a ¬ A a On | A a B a = B a On | A a B a
102 100 101 sylib x On y x A y = B y x a On | A a B a ¬ A a On | A a B a = B a On | A a B a
103 fveq2 y = a On | A a B a A y = A a On | A a B a
104 fveq2 y = a On | A a B a B y = B a On | A a B a
105 103 104 eqeq12d y = a On | A a B a A y = B y A a On | A a B a = B a On | A a B a
106 105 rspccv y x A y = B y a On | A a B a x A a On | A a B a = B a On | A a B a
107 106 ad2antlr x On y x A y = B y x a On | A a B a a On | A a B a x A a On | A a B a = B a On | A a B a
108 102 107 mtod x On y x A y = B y x a On | A a B a ¬ a On | A a B a x
109 simpll x On y x A y = B y x a On | A a B a x On
110 oninton a On | A a B a On a On | A a B a a On | A a B a On
111 82 83 110 sylancr x a On | A a B a a On | A a B a On
112 111 adantl x On y x A y = B y x a On | A a B a a On | A a B a On
113 ontri1 x On a On | A a B a On x a On | A a B a ¬ a On | A a B a x
114 109 112 113 syl2anc x On y x A y = B y x a On | A a B a x a On | A a B a ¬ a On | A a B a x
115 108 114 mpbird x On y x A y = B y x a On | A a B a x a On | A a B a
116 intss1 x a On | A a B a a On | A a B a x
117 116 adantl x On y x A y = B y x a On | A a B a a On | A a B a x
118 115 117 eqssd x On y x A y = B y x a On | A a B a x = a On | A a B a
119 81 118 syldan x On y x A y = B y A x B x x = a On | A a B a
120 75 119 sylan2 x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x x = a On | A a B a
121 120 fveq2d x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x = A a On | A a B a
122 120 fveq2d x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x B x = B a On | A a B a
123 121 122 breq12d x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
124 123 biimpd x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
125 124 ex x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
126 125 pm2.43d x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
127 126 expimpd x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
128 127 rexlimiv x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a
129 50 128 impbid1 A No B No A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
130 1 129 bitr4d A No B No A < s B A a On | A a B a 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B a On | A a B a