Metamath Proof Explorer


Theorem onint

Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)

Ref Expression
Assertion onint A On A A A

Proof

Step Hyp Ref Expression
1 ordon Ord On
2 tz7.5 Ord On A On A x A A x =
3 1 2 mp3an1 A On A x A A x =
4 ssel A On x A x On
5 4 imdistani A On x A A On x On
6 ssel A On z A z On
7 ontri1 x On z On x z ¬ z x
8 ssel x z y x y z
9 7 8 syl6bir x On z On ¬ z x y x y z
10 9 ex x On z On ¬ z x y x y z
11 6 10 sylan9 A On x On z A ¬ z x y x y z
12 11 com4r y x A On x On z A ¬ z x y z
13 12 imp31 y x A On x On z A ¬ z x y z
14 13 ralimdva y x A On x On z A ¬ z x z A y z
15 disj A x = z A ¬ z x
16 vex y V
17 16 elint2 y A z A y z
18 14 15 17 3imtr4g y x A On x On A x = y A
19 5 18 sylan2 y x A On x A A x = y A
20 19 exp32 y x A On x A A x = y A
21 20 com4l A On x A A x = y x y A
22 21 imp32 A On x A A x = y x y A
23 22 ssrdv A On x A A x = x A
24 intss1 x A A x
25 24 ad2antrl A On x A A x = A x
26 23 25 eqssd A On x A A x = x = A
27 26 eleq1d A On x A A x = x A A A
28 27 biimpd A On x A A x = x A A A
29 28 exp32 A On x A A x = x A A A
30 29 com34 A On x A x A A x = A A
31 30 pm2.43d A On x A A x = A A
32 31 rexlimdv A On x A A x = A A
33 3 32 syl5 A On A On A A A
34 33 anabsi5 A On A A A