Metamath Proof Explorer


Theorem onint0

Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion onint0 A On A = A

Proof

Step Hyp Ref Expression
1 0ex V
2 eleq1 A = A V V
3 1 2 mpbiri A = A V
4 intex A A V
5 3 4 sylibr A = A
6 onint A On A A A
7 5 6 sylan2 A On A = A A
8 eleq1 A = A A A
9 8 adantl A On A = A A A
10 7 9 mpbid A On A = A
11 10 ex A On A = A
12 int0el A A =
13 11 12 impbid1 A On A = A