Metamath Proof Explorer


Theorem brtp

Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypotheses brtp.1
|- X e. _V
brtp.2
|- Y e. _V
Assertion brtp
|- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) )

Proof

Step Hyp Ref Expression
1 brtp.1
 |-  X e. _V
2 brtp.2
 |-  Y e. _V
3 df-br
 |-  ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } )
4 opex
 |-  <. X , Y >. e. _V
5 4 eltp
 |-  ( <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } <-> ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) )
6 1 2 opth
 |-  ( <. X , Y >. = <. A , B >. <-> ( X = A /\ Y = B ) )
7 1 2 opth
 |-  ( <. X , Y >. = <. C , D >. <-> ( X = C /\ Y = D ) )
8 1 2 opth
 |-  ( <. X , Y >. = <. E , F >. <-> ( X = E /\ Y = F ) )
9 6 7 8 3orbi123i
 |-  ( ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) )
10 3 5 9 3bitri
 |-  ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) )