Step |
Hyp |
Ref |
Expression |
1 |
|
brtp.1 |
|- X e. _V |
2 |
|
brtp.2 |
|- Y e. _V |
3 |
|
df-br |
|- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } ) |
4 |
|
opex |
|- <. X , Y >. e. _V |
5 |
4
|
eltp |
|- ( <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } <-> ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) ) |
6 |
1 2
|
opth |
|- ( <. X , Y >. = <. A , B >. <-> ( X = A /\ Y = B ) ) |
7 |
1 2
|
opth |
|- ( <. X , Y >. = <. C , D >. <-> ( X = C /\ Y = D ) ) |
8 |
1 2
|
opth |
|- ( <. X , Y >. = <. E , F >. <-> ( X = E /\ Y = F ) ) |
9 |
6 7 8
|
3orbi123i |
|- ( ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) ) |
10 |
3 5 9
|
3bitri |
|- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) ) |