Metamath Proof Explorer


Theorem noxp1o

Description: The Cartesian product of an ordinal and { 1o } is a surreal. (Contributed by Scott Fenton, 12-Jun-2011)

Ref Expression
Assertion noxp1o
|- ( A e. On -> ( A X. { 1o } ) e. No )

Proof

Step Hyp Ref Expression
1 1oex
 |-  1o e. _V
2 1 prid1
 |-  1o e. { 1o , 2o }
3 2 fconst6
 |-  ( A X. { 1o } ) : A --> { 1o , 2o }
4 1 snnz
 |-  { 1o } =/= (/)
5 dmxp
 |-  ( { 1o } =/= (/) -> dom ( A X. { 1o } ) = A )
6 4 5 ax-mp
 |-  dom ( A X. { 1o } ) = A
7 6 feq2i
 |-  ( ( A X. { 1o } ) : dom ( A X. { 1o } ) --> { 1o , 2o } <-> ( A X. { 1o } ) : A --> { 1o , 2o } )
8 3 7 mpbir
 |-  ( A X. { 1o } ) : dom ( A X. { 1o } ) --> { 1o , 2o }
9 8 a1i
 |-  ( A e. On -> ( A X. { 1o } ) : dom ( A X. { 1o } ) --> { 1o , 2o } )
10 6 eleq1i
 |-  ( dom ( A X. { 1o } ) e. On <-> A e. On )
11 10 biimpri
 |-  ( A e. On -> dom ( A X. { 1o } ) e. On )
12 elno3
 |-  ( ( A X. { 1o } ) e. No <-> ( ( A X. { 1o } ) : dom ( A X. { 1o } ) --> { 1o , 2o } /\ dom ( A X. { 1o } ) e. On ) )
13 9 11 12 sylanbrc
 |-  ( A e. On -> ( A X. { 1o } ) e. No )