Metamath Proof Explorer


Theorem bdayfo

Description: The birthday function maps the surreals onto the ordinals. Axiom B of Alling p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011)

Ref Expression
Assertion bdayfo bday : No onto On

Proof

Step Hyp Ref Expression
1 dmexg x No dom x V
2 1 rgen x No dom x V
3 df-bday bday = x No dom x
4 3 mptfng x No dom x V bday Fn No
5 2 4 mpbi bday Fn No
6 3 rnmpt ran bday = y | x No y = dom x
7 noxp1o y On y × 1 𝑜 No
8 1oex 1 𝑜 V
9 8 snnz 1 𝑜
10 dmxp 1 𝑜 dom y × 1 𝑜 = y
11 9 10 ax-mp dom y × 1 𝑜 = y
12 11 eqcomi y = dom y × 1 𝑜
13 dmeq x = y × 1 𝑜 dom x = dom y × 1 𝑜
14 13 rspceeqv y × 1 𝑜 No y = dom y × 1 𝑜 x No y = dom x
15 7 12 14 sylancl y On x No y = dom x
16 nodmon x No dom x On
17 eleq1a dom x On y = dom x y On
18 16 17 syl x No y = dom x y On
19 18 rexlimiv x No y = dom x y On
20 15 19 impbii y On x No y = dom x
21 20 abbi2i On = y | x No y = dom x
22 6 21 eqtr4i ran bday = On
23 df-fo bday : No onto On bday Fn No ran bday = On
24 5 22 23 mpbir2an bday : No onto On