Metamath Proof Explorer


Theorem bdayfo

Description: The birthday function maps the surreals onto the ordinals. Axiom B of Alling p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011)

Ref Expression
Assertion bdayfo bday:NoontoOn

Proof

Step Hyp Ref Expression
1 dmexg xNodomxV
2 1 rgen xNodomxV
3 df-bday bday=xNodomx
4 3 mptfng xNodomxVbdayFnNo
5 2 4 mpbi bdayFnNo
6 3 rnmpt ranbday=y|xNoy=domx
7 noxp1o yOny×1𝑜No
8 1oex 1𝑜V
9 8 snnz 1𝑜
10 dmxp 1𝑜domy×1𝑜=y
11 9 10 ax-mp domy×1𝑜=y
12 11 eqcomi y=domy×1𝑜
13 dmeq x=y×1𝑜domx=domy×1𝑜
14 13 rspceeqv y×1𝑜Noy=domy×1𝑜xNoy=domx
15 7 12 14 sylancl yOnxNoy=domx
16 nodmon xNodomxOn
17 eleq1a domxOny=domxyOn
18 16 17 syl xNoy=domxyOn
19 18 rexlimiv xNoy=domxyOn
20 15 19 impbii yOnxNoy=domx
21 20 eqabi On=y|xNoy=domx
22 6 21 eqtr4i ranbday=On
23 df-fo bday:NoontoOnbdayFnNoranbday=On
24 5 22 23 mpbir2an bday:NoontoOn