Metamath Proof Explorer


Theorem noeta2

Description: A version of noeta with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion noeta2 A No A V B No B W x A y B x < s y z No x A x < s z y B z < s y bday z suc bday A B

Proof

Step Hyp Ref Expression
1 id A No A V B No B W x A y B x < s y A No A V B No B W x A y B x < s y
2 bdayfo bday : No onto On
3 fofun bday : No onto On Fun bday
4 2 3 ax-mp Fun bday
5 simp1r A No A V B No B W x A y B x < s y A V
6 simp2r A No A V B No B W x A y B x < s y B W
7 unexg A V B W A B V
8 5 6 7 syl2anc A No A V B No B W x A y B x < s y A B V
9 funimaexg Fun bday A B V bday A B V
10 4 8 9 sylancr A No A V B No B W x A y B x < s y bday A B V
11 10 uniexd A No A V B No B W x A y B x < s y bday A B V
12 imassrn bday A B ran bday
13 forn bday : No onto On ran bday = On
14 2 13 ax-mp ran bday = On
15 12 14 sseqtri bday A B On
16 ssorduni bday A B On Ord bday A B
17 15 16 ax-mp Ord bday A B
18 elon2 bday A B On Ord bday A B bday A B V
19 17 18 mpbiran bday A B On bday A B V
20 11 19 sylibr A No A V B No B W x A y B x < s y bday A B On
21 sucelon bday A B On suc bday A B On
22 20 21 sylib A No A V B No B W x A y B x < s y suc bday A B On
23 onsucuni bday A B On bday A B suc bday A B
24 15 23 mp1i A No A V B No B W x A y B x < s y bday A B suc bday A B
25 noeta A No A V B No B W x A y B x < s y suc bday A B On bday A B suc bday A B z No x A x < s z y B z < s y bday z suc bday A B
26 1 22 24 25 syl12anc A No A V B No B W x A y B x < s y z No x A x < s z y B z < s y bday z suc bday A B