Metamath Proof Explorer


Theorem noeta2

Description: A version of noeta with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion noeta2 ANoAVBNoBWxAyBx<syzNoxAx<szyBz<sybdayzsucbdayAB

Proof

Step Hyp Ref Expression
1 id ANoAVBNoBWxAyBx<syANoAVBNoBWxAyBx<sy
2 bdayfo bday:NoontoOn
3 fofun bday:NoontoOnFunbday
4 2 3 ax-mp Funbday
5 simp1r ANoAVBNoBWxAyBx<syAV
6 simp2r ANoAVBNoBWxAyBx<syBW
7 unexg AVBWABV
8 5 6 7 syl2anc ANoAVBNoBWxAyBx<syABV
9 funimaexg FunbdayABVbdayABV
10 4 8 9 sylancr ANoAVBNoBWxAyBx<sybdayABV
11 10 uniexd ANoAVBNoBWxAyBx<sybdayABV
12 imassrn bdayABranbday
13 forn bday:NoontoOnranbday=On
14 2 13 ax-mp ranbday=On
15 12 14 sseqtri bdayABOn
16 ssorduni bdayABOnOrdbdayAB
17 15 16 ax-mp OrdbdayAB
18 elon2 bdayABOnOrdbdayABbdayABV
19 17 18 mpbiran bdayABOnbdayABV
20 11 19 sylibr ANoAVBNoBWxAyBx<sybdayABOn
21 onsucb bdayABOnsucbdayABOn
22 20 21 sylib ANoAVBNoBWxAyBx<sysucbdayABOn
23 onsucuni bdayABOnbdayABsucbdayAB
24 15 23 mp1i ANoAVBNoBWxAyBx<sybdayABsucbdayAB
25 noeta ANoAVBNoBWxAyBx<sysucbdayABOnbdayABsucbdayABzNoxAx<szyBz<sybdayzsucbdayAB
26 1 22 24 25 syl12anc ANoAVBNoBWxAyBx<syzNoxAx<szyBz<sybdayzsucbdayAB