Metamath Proof Explorer


Theorem onsucb

Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc . (Contributed by NM, 9-Sep-2003)

Ref Expression
Assertion onsucb AOnsucAOn

Proof

Step Hyp Ref Expression
1 ordsuc OrdAOrdsucA
2 sucexb AVsucAV
3 1 2 anbi12i OrdAAVOrdsucAsucAV
4 elon2 AOnOrdAAV
5 elon2 sucAOnOrdsucAsucAV
6 3 4 5 3bitr4i AOnsucAOn