Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ if ( ∃ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 , ( ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) , 2o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐴 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) = if ( ∃ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 , ( ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) , 2o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐴 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) |
2 |
1
|
nosupcbv |
⊢ if ( ∃ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 , ( ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ¬ 𝑓 <s 𝑔 ) , 2o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐴 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) = if ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 , ( ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏 ) , 2o 〉 } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐴 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐴 ( ¬ 𝑒 <s 𝑑 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐴 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐴 ( ¬ 𝑒 <s 𝑑 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) ) |
3 |
|
eqid |
⊢ if ( ∃ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 , ( ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) , 1o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐵 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) = if ( ∃ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 , ( ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) , 1o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐵 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) |
4 |
3
|
noinfcbv |
⊢ if ( ∃ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 , ( ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { 〈 dom ( ℩ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ¬ 𝑔 <s 𝑓 ) , 1o 〉 } ) , ( ℎ ∈ { 𝑔 ∣ ∃ 𝑗 ∈ 𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓 ∃ 𝑗 ∈ 𝐵 ( ℎ ∈ dom 𝑗 ∧ ∀ 𝑘 ∈ 𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ℎ ) = ( 𝑘 ↾ suc ℎ ) ) ∧ ( 𝑗 ‘ ℎ ) = 𝑓 ) ) ) ) = if ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 , ( ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) ) |
5 |
2 4
|
noetalem2 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑧 ∈ No ( ∀ 𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘ 𝑧 ) ⊆ 𝑂 ) ) |