Metamath Proof Explorer


Theorem noeta

Description: The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of A and B are strictly bounded above by O , then O non-strictly bounds the separator. Axiom FE of Alling p. 185. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion noeta ( ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑧 No ( ∀ 𝑥𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧 ) ⊆ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 eqid if ( ∃ 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 , ( ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { ⟨ dom ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) , 2o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) ) = if ( ∃ 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 , ( ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { ⟨ dom ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) , 2o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) )
2 1 nosupcbv if ( ∃ 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 , ( ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) ∪ { ⟨ dom ( 𝑓𝐴𝑔𝐴 ¬ 𝑓 <s 𝑔 ) , 2o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐴 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐴 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐴 ( ¬ 𝑘 <s 𝑗 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) ) = if ( ∃ 𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏 , ( ( 𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏 ) ∪ { ⟨ dom ( 𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏 ) , 2o ⟩ } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑𝐴 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒𝐴 ( ¬ 𝑒 <s 𝑑 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎𝑑𝐴 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒𝐴 ( ¬ 𝑒 <s 𝑑 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑𝑐 ) = 𝑎 ) ) ) )
3 eqid if ( ∃ 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 , ( ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { ⟨ dom ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) , 1o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) ) = if ( ∃ 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 , ( ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { ⟨ dom ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) , 1o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) )
4 3 noinfcbv if ( ∃ 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 , ( ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) ∪ { ⟨ dom ( 𝑓𝐵𝑔𝐵 ¬ 𝑔 <s 𝑓 ) , 1o ⟩ } ) , ( ∈ { 𝑔 ∣ ∃ 𝑗𝐵 ( 𝑔 ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc 𝑔 ) = ( 𝑘 ↾ suc 𝑔 ) ) ) } ↦ ( ℩ 𝑓𝑗𝐵 ( ∈ dom 𝑗 ∧ ∀ 𝑘𝐵 ( ¬ 𝑗 <s 𝑘 → ( 𝑗 ↾ suc ) = ( 𝑘 ↾ suc ) ) ∧ ( 𝑗 ) = 𝑓 ) ) ) ) = if ( ∃ 𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎 , ( ( 𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎 ) ∪ { ⟨ dom ( 𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎 ) , 1o ⟩ } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎𝑑𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑𝑐 ) = 𝑎 ) ) ) )
5 2 4 noetalem2 ( ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑧 No ( ∀ 𝑥𝐴 𝑥 <s 𝑧 ∧ ∀ 𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧 ) ⊆ 𝑂 ) )