Metamath Proof Explorer


Theorem noetalem2

Description: Lemma for noeta . The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Hypotheses noetalem2.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
noetalem2.2 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion noetalem2 ( ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 noetalem2.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 noetalem2.2 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
3 elex ( 𝐴𝑉𝐴 ∈ V )
4 3 anim2i ( ( 𝐴 No 𝐴𝑉 ) → ( 𝐴 No 𝐴 ∈ V ) )
5 elex ( 𝐵𝑊𝐵 ∈ V )
6 5 anim2i ( ( 𝐵 No 𝐵𝑊 ) → ( 𝐵 No 𝐵 ∈ V ) )
7 id ( ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 )
8 4 6 7 3anim123i ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) )
9 eqid ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) )
10 eqid ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) )
11 1 2 9 10 noetalem1 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) )
12 breq2 ( 𝑐 = 𝑆 → ( 𝑎 <s 𝑐𝑎 <s 𝑆 ) )
13 12 ralbidv ( 𝑐 = 𝑆 → ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ↔ ∀ 𝑎𝐴 𝑎 <s 𝑆 ) )
14 breq1 ( 𝑐 = 𝑆 → ( 𝑐 <s 𝑏𝑆 <s 𝑏 ) )
15 14 ralbidv ( 𝑐 = 𝑆 → ( ∀ 𝑏𝐵 𝑐 <s 𝑏 ↔ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) )
16 fveq2 ( 𝑐 = 𝑆 → ( bday 𝑐 ) = ( bday 𝑆 ) )
17 16 sseq1d ( 𝑐 = 𝑆 → ( ( bday 𝑐 ) ⊆ 𝑂 ↔ ( bday 𝑆 ) ⊆ 𝑂 ) )
18 13 15 17 3anbi123d ( 𝑐 = 𝑆 → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) )
19 18 rspcev ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )
20 breq2 ( 𝑐 = 𝑇 → ( 𝑎 <s 𝑐𝑎 <s 𝑇 ) )
21 20 ralbidv ( 𝑐 = 𝑇 → ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ↔ ∀ 𝑎𝐴 𝑎 <s 𝑇 ) )
22 breq1 ( 𝑐 = 𝑇 → ( 𝑐 <s 𝑏𝑇 <s 𝑏 ) )
23 22 ralbidv ( 𝑐 = 𝑇 → ( ∀ 𝑏𝐵 𝑐 <s 𝑏 ↔ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) )
24 fveq2 ( 𝑐 = 𝑇 → ( bday 𝑐 ) = ( bday 𝑇 ) )
25 24 sseq1d ( 𝑐 = 𝑇 → ( ( bday 𝑐 ) ⊆ 𝑂 ↔ ( bday 𝑇 ) ⊆ 𝑂 ) )
26 21 23 25 3anbi123d ( 𝑐 = 𝑇 → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) )
27 26 rspcev ( ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )
28 19 27 jaoi ( ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )
29 11 28 syl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )
30 8 29 sylan ( ( ( ( 𝐴 No 𝐴𝑉 ) ∧ ( 𝐵 No 𝐵𝑊 ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑐 No ( ∀ 𝑎𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐 ) ⊆ 𝑂 ) )