Step |
Hyp |
Ref |
Expression |
1 |
|
noetalem2.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetalem2.2 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
3 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
4 |
3
|
anim2i |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
5 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
6 |
5
|
anim2i |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) |
7 |
|
id |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
8 |
4 6 7
|
3anim123i |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ) |
9 |
|
eqid |
⊢ ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
10 |
|
eqid |
⊢ ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
11 |
1 2 9 10
|
noetalem1 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑐 = 𝑆 → ( 𝑎 <s 𝑐 ↔ 𝑎 <s 𝑆 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑐 = 𝑆 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ) ) |
14 |
|
breq1 |
⊢ ( 𝑐 = 𝑆 → ( 𝑐 <s 𝑏 ↔ 𝑆 <s 𝑏 ) ) |
15 |
14
|
ralbidv |
⊢ ( 𝑐 = 𝑆 → ( ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑐 = 𝑆 → ( bday ‘ 𝑐 ) = ( bday ‘ 𝑆 ) ) |
17 |
16
|
sseq1d |
⊢ ( 𝑐 = 𝑆 → ( ( bday ‘ 𝑐 ) ⊆ 𝑂 ↔ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) |
18 |
13 15 17
|
3anbi123d |
⊢ ( 𝑐 = 𝑆 → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) |
19 |
18
|
rspcev |
⊢ ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) → ∃ 𝑐 ∈ No ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ) |
20 |
|
breq2 |
⊢ ( 𝑐 = 𝑇 → ( 𝑎 <s 𝑐 ↔ 𝑎 <s 𝑇 ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑐 = 𝑇 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ) ) |
22 |
|
breq1 |
⊢ ( 𝑐 = 𝑇 → ( 𝑐 <s 𝑏 ↔ 𝑇 <s 𝑏 ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑐 = 𝑇 → ( ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑐 = 𝑇 → ( bday ‘ 𝑐 ) = ( bday ‘ 𝑇 ) ) |
25 |
24
|
sseq1d |
⊢ ( 𝑐 = 𝑇 → ( ( bday ‘ 𝑐 ) ⊆ 𝑂 ↔ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) |
26 |
21 23 25
|
3anbi123d |
⊢ ( 𝑐 = 𝑇 → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) → ∃ 𝑐 ∈ No ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ) |
28 |
19 27
|
jaoi |
⊢ ( ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) → ∃ 𝑐 ∈ No ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ) |
29 |
11 28
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑐 ∈ No ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ) |
30 |
8 29
|
sylan |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑐 ∈ No ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘ 𝑐 ) ⊆ 𝑂 ) ) |