Metamath Proof Explorer


Theorem noetalem2

Description: Lemma for noeta . The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Hypotheses noetalem2.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
noetalem2.2 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
Assertion noetalem2 A No A V B No B W a A b B a < s b O On bday A B O c No a A a < s c b B c < s b bday c O

Proof

Step Hyp Ref Expression
1 noetalem2.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 noetalem2.2 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
3 elex A V A V
4 3 anim2i A No A V A No A V
5 elex B W B V
6 5 anim2i B No B W B No B V
7 id a A b B a < s b a A b B a < s b
8 4 6 7 3anim123i A No A V B No B W a A b B a < s b A No A V B No B V a A b B a < s b
9 eqid S suc bday B dom S × 1 𝑜 = S suc bday B dom S × 1 𝑜
10 eqid T suc bday A dom T × 2 𝑜 = T suc bday A dom T × 2 𝑜
11 1 2 9 10 noetalem1 A No A V B No B V a A b B a < s b O On bday A B O S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O
12 breq2 c = S a < s c a < s S
13 12 ralbidv c = S a A a < s c a A a < s S
14 breq1 c = S c < s b S < s b
15 14 ralbidv c = S b B c < s b b B S < s b
16 fveq2 c = S bday c = bday S
17 16 sseq1d c = S bday c O bday S O
18 13 15 17 3anbi123d c = S a A a < s c b B c < s b bday c O a A a < s S b B S < s b bday S O
19 18 rspcev S No a A a < s S b B S < s b bday S O c No a A a < s c b B c < s b bday c O
20 breq2 c = T a < s c a < s T
21 20 ralbidv c = T a A a < s c a A a < s T
22 breq1 c = T c < s b T < s b
23 22 ralbidv c = T b B c < s b b B T < s b
24 fveq2 c = T bday c = bday T
25 24 sseq1d c = T bday c O bday T O
26 21 23 25 3anbi123d c = T a A a < s c b B c < s b bday c O a A a < s T b B T < s b bday T O
27 26 rspcev T No a A a < s T b B T < s b bday T O c No a A a < s c b B c < s b bday c O
28 19 27 jaoi S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O c No a A a < s c b B c < s b bday c O
29 11 28 syl A No A V B No B V a A b B a < s b O On bday A B O c No a A a < s c b B c < s b bday c O
30 8 29 sylan A No A V B No B W a A b B a < s b O On bday A B O c No a A a < s c b B c < s b bday c O