Metamath Proof Explorer


Theorem noetalem1

Description: Lemma for noeta . Either S or T satisfies the final condition. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetalem1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
noetalem1.2 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
noetalem1.3 Z = S suc bday B dom S × 1 𝑜
noetalem1.4 W = T suc bday A dom T × 2 𝑜
Assertion noetalem1 A No A V B No B V a A b B a < s b O On bday A B O S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O

Proof

Step Hyp Ref Expression
1 noetalem1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 noetalem1.2 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
3 noetalem1.3 Z = S suc bday B dom S × 1 𝑜
4 noetalem1.4 W = T suc bday A dom T × 2 𝑜
5 2 noinfno B No B V T No
6 5 adantl A No A V B No B V T No
7 nodmord T No Ord dom T
8 6 7 syl A No A V B No B V Ord dom T
9 1 nosupno A No A V S No
10 9 adantr A No A V B No B V S No
11 nodmord S No Ord dom S
12 10 11 syl A No A V B No B V Ord dom S
13 ordtri2or2 Ord dom T Ord dom S dom T dom S dom S dom T
14 8 12 13 syl2anc A No A V B No B V dom T dom S dom S dom T
15 ssequn2 dom T dom S dom S dom T = dom S
16 ssequn1 dom S dom T dom S dom T = dom T
17 15 16 orbi12i dom T dom S dom S dom T dom S dom T = dom S dom S dom T = dom T
18 14 17 sylib A No A V B No B V dom S dom T = dom S dom S dom T = dom T
19 18 3adant3 A No A V B No B V a A b B a < s b dom S dom T = dom S dom S dom T = dom T
20 simplll A No A V B No B V a A A No
21 simpllr A No A V B No B V a A A V
22 simplrr A No A V B No B V a A B V
23 simpr A No A V B No B V a A a A
24 1 3 noetasuplem3 A No A V B V a A a < s Z
25 20 21 22 23 24 syl31anc A No A V B No B V a A a < s Z
26 25 ralrimiva A No A V B No B V a A a < s Z
27 26 3adant3 A No A V B No B V a A b B a < s b a A a < s Z
28 1 3 noetasuplem4 A No A V B No B V a A b B a < s b b B Z < s b
29 27 28 jca A No A V B No B V a A b B a < s b a A a < s Z b B Z < s b
30 29 adantr A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s Z b B Z < s b
31 simp1l A No A V B No B V a A b B a < s b A No
32 simp1r A No A V B No B V a A b B a < s b A V
33 simp2r A No A V B No B V a A b B a < s b B V
34 1 3 noetasuplem1 A No A V B V Z No
35 31 32 33 34 syl3anc A No A V B No B V a A b B a < s b Z No
36 1 2 nosupinfsep A No A V B No B V Z No a A a < s Z b B Z < s b a A a < s Z dom S dom T b B Z dom S dom T < s b
37 35 36 syld3an3 A No A V B No B V a A b B a < s b a A a < s Z b B Z < s b a A a < s Z dom S dom T b B Z dom S dom T < s b
38 37 adantr A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s Z b B Z < s b a A a < s Z dom S dom T b B Z dom S dom T < s b
39 simpr A No A V B No B V dom S dom T = dom S dom S dom T = dom S
40 39 reseq2d A No A V B No B V dom S dom T = dom S Z dom S dom T = Z dom S
41 simplll A No A V B No B V dom S dom T = dom S A No
42 simpllr A No A V B No B V dom S dom T = dom S A V
43 simplrr A No A V B No B V dom S dom T = dom S B V
44 1 3 noetasuplem2 A No A V B V Z dom S = S
45 41 42 43 44 syl3anc A No A V B No B V dom S dom T = dom S Z dom S = S
46 40 45 eqtrd A No A V B No B V dom S dom T = dom S Z dom S dom T = S
47 46 breq2d A No A V B No B V dom S dom T = dom S a < s Z dom S dom T a < s S
48 47 ralbidv A No A V B No B V dom S dom T = dom S a A a < s Z dom S dom T a A a < s S
49 46 breq1d A No A V B No B V dom S dom T = dom S Z dom S dom T < s b S < s b
50 49 ralbidv A No A V B No B V dom S dom T = dom S b B Z dom S dom T < s b b B S < s b
51 48 50 anbi12d A No A V B No B V dom S dom T = dom S a A a < s Z dom S dom T b B Z dom S dom T < s b a A a < s S b B S < s b
52 51 3adantl3 A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s Z dom S dom T b B Z dom S dom T < s b a A a < s S b B S < s b
53 38 52 bitrd A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s Z b B Z < s b a A a < s S b B S < s b
54 30 53 mpbid A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s S b B S < s b
55 54 ex A No A V B No B V a A b B a < s b dom S dom T = dom S a A a < s S b B S < s b
56 2 4 noetainflem4 A No A V B No B V a A b B a < s b a A a < s W
57 simpllr A No A V B No B V b B A V
58 simplrl A No A V B No B V b B B No
59 simplrr A No A V B No B V b B B V
60 simpr A No A V B No B V b B b B
61 2 4 noetainflem3 A V B No B V b B W < s b
62 57 58 59 60 61 syl31anc A No A V B No B V b B W < s b
63 62 ralrimiva A No A V B No B V b B W < s b
64 63 3adant3 A No A V B No B V a A b B a < s b b B W < s b
65 56 64 jca A No A V B No B V a A b B a < s b a A a < s W b B W < s b
66 65 adantr A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s W b B W < s b
67 simpl1 A No A V B No B V a A b B a < s b dom S dom T = dom T A No A V
68 simpl2l A No A V B No B V a A b B a < s b dom S dom T = dom T B No
69 simpl2r A No A V B No B V a A b B a < s b dom S dom T = dom T B V
70 simpl1r A No A V B No B V a A b B a < s b dom S dom T = dom T A V
71 2 4 noetainflem1 A V B No B V W No
72 70 68 69 71 syl3anc A No A V B No B V a A b B a < s b dom S dom T = dom T W No
73 1 2 nosupinfsep A No A V B No B V W No a A a < s W b B W < s b a A a < s W dom S dom T b B W dom S dom T < s b
74 67 68 69 72 73 syl121anc A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s W b B W < s b a A a < s W dom S dom T b B W dom S dom T < s b
75 simpr A No A V B No B V dom S dom T = dom T dom S dom T = dom T
76 75 reseq2d A No A V B No B V dom S dom T = dom T W dom S dom T = W dom T
77 simplr A No A V B No B V dom S dom T = dom T B No B V
78 2 4 noetainflem2 B No B V W dom T = T
79 77 78 syl A No A V B No B V dom S dom T = dom T W dom T = T
80 76 79 eqtrd A No A V B No B V dom S dom T = dom T W dom S dom T = T
81 80 breq2d A No A V B No B V dom S dom T = dom T a < s W dom S dom T a < s T
82 81 ralbidv A No A V B No B V dom S dom T = dom T a A a < s W dom S dom T a A a < s T
83 80 breq1d A No A V B No B V dom S dom T = dom T W dom S dom T < s b T < s b
84 83 ralbidv A No A V B No B V dom S dom T = dom T b B W dom S dom T < s b b B T < s b
85 82 84 anbi12d A No A V B No B V dom S dom T = dom T a A a < s W dom S dom T b B W dom S dom T < s b a A a < s T b B T < s b
86 85 3adantl3 A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s W dom S dom T b B W dom S dom T < s b a A a < s T b B T < s b
87 74 86 bitrd A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s W b B W < s b a A a < s T b B T < s b
88 66 87 mpbid A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s T b B T < s b
89 88 ex A No A V B No B V a A b B a < s b dom S dom T = dom T a A a < s T b B T < s b
90 55 89 orim12d A No A V B No B V a A b B a < s b dom S dom T = dom S dom S dom T = dom T a A a < s S b B S < s b a A a < s T b B T < s b
91 19 90 mpd A No A V B No B V a A b B a < s b a A a < s S b B S < s b a A a < s T b B T < s b
92 91 adantr A No A V B No B V a A b B a < s b O On bday A B O a A a < s S b B S < s b a A a < s T b B T < s b
93 simpll A No A V B No B V O On bday A B O A No A V
94 simprl A No A V B No B V O On bday A B O O On
95 ssun1 A A B
96 imass2 A A B bday A bday A B
97 95 96 ax-mp bday A bday A B
98 simprr A No A V B No B V O On bday A B O bday A B O
99 97 98 sstrid A No A V B No B V O On bday A B O bday A O
100 1 nosupbday A No A V O On bday A O bday S O
101 93 94 99 100 syl12anc A No A V B No B V O On bday A B O bday S O
102 101 a1d A No A V B No B V O On bday A B O a A a < s S b B S < s b bday S O
103 102 ancld A No A V B No B V O On bday A B O a A a < s S b B S < s b a A a < s S b B S < s b bday S O
104 df-3an a A a < s S b B S < s b bday S O a A a < s S b B S < s b bday S O
105 103 104 syl6ibr A No A V B No B V O On bday A B O a A a < s S b B S < s b a A a < s S b B S < s b bday S O
106 93 9 syl A No A V B No B V O On bday A B O S No
107 105 106 jctild A No A V B No B V O On bday A B O a A a < s S b B S < s b S No a A a < s S b B S < s b bday S O
108 simplr A No A V B No B V O On bday A B O B No B V
109 ssun2 B A B
110 imass2 B A B bday B bday A B
111 109 110 ax-mp bday B bday A B
112 111 98 sstrid A No A V B No B V O On bday A B O bday B O
113 2 noinfbday B No B V O On bday B O bday T O
114 108 94 112 113 syl12anc A No A V B No B V O On bday A B O bday T O
115 114 a1d A No A V B No B V O On bday A B O a A a < s T b B T < s b bday T O
116 115 ancld A No A V B No B V O On bday A B O a A a < s T b B T < s b a A a < s T b B T < s b bday T O
117 df-3an a A a < s T b B T < s b bday T O a A a < s T b B T < s b bday T O
118 116 117 syl6ibr A No A V B No B V O On bday A B O a A a < s T b B T < s b a A a < s T b B T < s b bday T O
119 108 5 syl A No A V B No B V O On bday A B O T No
120 118 119 jctild A No A V B No B V O On bday A B O a A a < s T b B T < s b T No a A a < s T b B T < s b bday T O
121 107 120 orim12d A No A V B No B V O On bday A B O a A a < s S b B S < s b a A a < s T b B T < s b S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O
122 121 3adantl3 A No A V B No B V a A b B a < s b O On bday A B O a A a < s S b B S < s b a A a < s T b B T < s b S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O
123 92 122 mpd A No A V B No B V a A b B a < s b O On bday A B O S No a A a < s S b B S < s b bday S O T No a A a < s T b B T < s b bday T O