Step |
Hyp |
Ref |
Expression |
1 |
|
noetalem1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetalem1.2 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
3 |
|
noetalem1.3 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
4 |
|
noetalem1.4 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
5 |
2
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝑇 ∈ No ) |
7 |
|
nodmord |
⊢ ( 𝑇 ∈ No → Ord dom 𝑇 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → Ord dom 𝑇 ) |
9 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝑆 ∈ No ) |
11 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → Ord dom 𝑆 ) |
13 |
|
ordtri2or2 |
⊢ ( ( Ord dom 𝑇 ∧ Ord dom 𝑆 ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ) |
14 |
8 12 13
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ) |
15 |
|
ssequn2 |
⊢ ( dom 𝑇 ⊆ dom 𝑆 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) |
16 |
|
ssequn1 |
⊢ ( dom 𝑆 ⊆ dom 𝑇 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) |
17 |
15 16
|
orbi12i |
⊢ ( ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ↔ ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
18 |
14 17
|
sylib |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
19 |
18
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
20 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
21 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ∈ V ) |
22 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ V ) |
23 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
24 |
1 3
|
noetasuplem3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑍 ) |
25 |
20 21 22 23 24
|
syl31anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑍 ) |
26 |
25
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
28 |
1 3
|
noetasuplem4 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
29 |
27 28
|
jca |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
31 |
|
simp1l |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐴 ⊆ No ) |
32 |
|
simp1r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐴 ∈ V ) |
33 |
|
simp2r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐵 ∈ V ) |
34 |
1 3
|
noetasuplem1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 ∈ No ) |
35 |
31 32 33 34
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝑍 ∈ No ) |
36 |
1 2
|
nosupinfsep |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑍 ∈ No ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
37 |
35 36
|
syld3an3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
39 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) |
40 |
39
|
reseq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑍 ↾ dom 𝑆 ) ) |
41 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 ⊆ No ) |
42 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 ∈ V ) |
43 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐵 ∈ V ) |
44 |
1 3
|
noetasuplem2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
45 |
41 42 43 44
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
46 |
40 45
|
eqtrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑆 ) |
47 |
46
|
breq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑆 ) ) |
48 |
47
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ) ) |
49 |
46
|
breq1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ 𝑆 <s 𝑏 ) ) |
50 |
49
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) |
51 |
48 50
|
anbi12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
52 |
51
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
53 |
38 52
|
bitrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
54 |
30 53
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) |
55 |
54
|
ex |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
56 |
2 4
|
noetainflem4 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ) |
57 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ V ) |
58 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ⊆ No ) |
59 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ V ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
61 |
2 4
|
noetainflem3 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑏 ∈ 𝐵 ) → 𝑊 <s 𝑏 ) |
62 |
57 58 59 60 61
|
syl31anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑊 <s 𝑏 ) |
63 |
62
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) |
64 |
63
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) |
65 |
56 64
|
jca |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ) |
67 |
|
simpl1 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
68 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 ⊆ No ) |
69 |
|
simpl2r |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 ∈ V ) |
70 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐴 ∈ V ) |
71 |
2 4
|
noetainflem1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑊 ∈ No ) |
72 |
70 68 69 71
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝑊 ∈ No ) |
73 |
1 2
|
nosupinfsep |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑊 ∈ No ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
74 |
67 68 69 72 73
|
syl121anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
75 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) |
76 |
75
|
reseq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑊 ↾ dom 𝑇 ) ) |
77 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) |
78 |
2 4
|
noetainflem2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
80 |
76 79
|
eqtrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑇 ) |
81 |
80
|
breq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑇 ) ) |
82 |
81
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ) ) |
83 |
80
|
breq1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ 𝑇 <s 𝑏 ) ) |
84 |
83
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) |
85 |
82 84
|
anbi12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
86 |
85
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
87 |
74 86
|
bitrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
88 |
66 87
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) |
89 |
88
|
ex |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
90 |
55 89
|
orim12d |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) ) |
91 |
19 90
|
mpd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
92 |
91
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
93 |
|
simpll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
94 |
|
simprl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑂 ∈ On ) |
95 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
96 |
|
imass2 |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → ( bday “ 𝐴 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
97 |
95 96
|
ax-mp |
⊢ ( bday “ 𝐴 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) |
98 |
|
simprr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) |
99 |
97 98
|
sstrid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ 𝐴 ) ⊆ 𝑂 ) |
100 |
1
|
nosupbday |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) |
101 |
93 94 99 100
|
syl12anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) |
102 |
101
|
a1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) |
103 |
102
|
ancld |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) |
104 |
|
df-3an |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) |
105 |
103 104
|
syl6ibr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) |
106 |
93 9
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑆 ∈ No ) |
107 |
105 106
|
jctild |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) ) |
108 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) |
109 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
110 |
|
imass2 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → ( bday “ 𝐵 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
111 |
109 110
|
ax-mp |
⊢ ( bday “ 𝐵 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) |
112 |
111 98
|
sstrid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ 𝐵 ) ⊆ 𝑂 ) |
113 |
2
|
noinfbday |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) |
114 |
108 94 112 113
|
syl12anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) |
115 |
114
|
a1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) |
116 |
115
|
ancld |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) |
117 |
|
df-3an |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) |
118 |
116 117
|
syl6ibr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) |
119 |
108 5
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑇 ∈ No ) |
120 |
118 119
|
jctild |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) |
121 |
107 120
|
orim12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) ) |
122 |
121
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) ) |
123 |
92 122
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) |