Metamath Proof Explorer


Theorem noetalem1

Description: Lemma for noeta . Either S or T satisfies the final condition. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetalem1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
noetalem1.2 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
noetalem1.3 𝑍 = ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) )
noetalem1.4 𝑊 = ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) )
Assertion noetalem1 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) )

Proof

Step Hyp Ref Expression
1 noetalem1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 noetalem1.2 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
3 noetalem1.3 𝑍 = ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) )
4 noetalem1.4 𝑊 = ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) )
5 2 noinfno ( ( 𝐵 No 𝐵 ∈ V ) → 𝑇 No )
6 5 adantl ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → 𝑇 No )
7 nodmord ( 𝑇 No → Ord dom 𝑇 )
8 6 7 syl ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → Ord dom 𝑇 )
9 1 nosupno ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
10 9 adantr ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → 𝑆 No )
11 nodmord ( 𝑆 No → Ord dom 𝑆 )
12 10 11 syl ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → Ord dom 𝑆 )
13 ordtri2or2 ( ( Ord dom 𝑇 ∧ Ord dom 𝑆 ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) )
14 8 12 13 syl2anc ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) )
15 ssequn2 ( dom 𝑇 ⊆ dom 𝑆 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 )
16 ssequn1 ( dom 𝑆 ⊆ dom 𝑇 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 )
17 15 16 orbi12i ( ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ↔ ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) )
18 14 17 sylib ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) )
19 18 3adant3 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) )
20 simplll ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑎𝐴 ) → 𝐴 No )
21 simpllr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑎𝐴 ) → 𝐴 ∈ V )
22 simplrr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑎𝐴 ) → 𝐵 ∈ V )
23 simpr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑎𝐴 ) → 𝑎𝐴 )
24 1 3 noetasuplem3 ( ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑎𝐴 ) → 𝑎 <s 𝑍 )
25 20 21 22 23 24 syl31anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑎𝐴 ) → 𝑎 <s 𝑍 )
26 25 ralrimiva ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → ∀ 𝑎𝐴 𝑎 <s 𝑍 )
27 26 3adant3 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎𝐴 𝑎 <s 𝑍 )
28 1 3 noetasuplem4 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏𝐵 𝑍 <s 𝑏 )
29 27 28 jca ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) )
30 29 adantr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) )
31 simp1l ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → 𝐴 No )
32 simp1r ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → 𝐴 ∈ V )
33 simp2r ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → 𝐵 ∈ V )
34 1 3 noetasuplem1 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 No )
35 31 32 33 34 syl3anc ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → 𝑍 No )
36 1 2 nosupinfsep ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ 𝑍 No ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) )
37 35 36 syld3an3 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) )
38 37 adantr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) )
39 simpr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 )
40 39 reseq2d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑍 ↾ dom 𝑆 ) )
41 simplll ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 No )
42 simpllr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 ∈ V )
43 simplrr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐵 ∈ V )
44 1 3 noetasuplem2 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 )
45 41 42 43 44 syl3anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 )
46 40 45 eqtrd ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑆 )
47 46 breq2d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑆 ) )
48 47 ralbidv ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎𝐴 𝑎 <s 𝑆 ) )
49 46 breq1d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏𝑆 <s 𝑏 ) )
50 49 ralbidv ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) )
51 48 50 anbi12d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ) )
52 51 3adantl3 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ) )
53 38 52 bitrd ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ) )
54 30 53 mpbid ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) )
55 54 ex ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 → ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ) )
56 2 4 noetainflem4 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎𝐴 𝑎 <s 𝑊 )
57 simpllr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑏𝐵 ) → 𝐴 ∈ V )
58 simplrl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑏𝐵 ) → 𝐵 No )
59 simplrr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑏𝐵 ) → 𝐵 ∈ V )
60 simpr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑏𝐵 ) → 𝑏𝐵 )
61 2 4 noetainflem3 ( ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) ∧ 𝑏𝐵 ) → 𝑊 <s 𝑏 )
62 57 58 59 60 61 syl31anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ 𝑏𝐵 ) → 𝑊 <s 𝑏 )
63 62 ralrimiva ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) → ∀ 𝑏𝐵 𝑊 <s 𝑏 )
64 63 3adant3 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏𝐵 𝑊 <s 𝑏 )
65 56 64 jca ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏𝐵 𝑊 <s 𝑏 ) )
66 65 adantr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏𝐵 𝑊 <s 𝑏 ) )
67 simpl1 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐴 No 𝐴 ∈ V ) )
68 simpl2l ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 No )
69 simpl2r ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 ∈ V )
70 simpl1r ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐴 ∈ V )
71 2 4 noetainflem1 ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → 𝑊 No )
72 70 68 69 71 syl3anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝑊 No )
73 1 2 nosupinfsep ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ 𝑊 No ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) )
74 67 68 69 72 73 syl121anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) )
75 simpr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 )
76 75 reseq2d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑊 ↾ dom 𝑇 ) )
77 simplr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐵 No 𝐵 ∈ V ) )
78 2 4 noetainflem2 ( ( 𝐵 No 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 )
79 77 78 syl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 )
80 76 79 eqtrd ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑇 )
81 80 breq2d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑇 ) )
82 81 ralbidv ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎𝐴 𝑎 <s 𝑇 ) )
83 80 breq1d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏𝑇 <s 𝑏 ) )
84 83 ralbidv ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑏𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) )
85 82 84 anbi12d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
86 85 3adantl3 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
87 74 86 bitrd ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
88 66 87 mpbid ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) )
89 88 ex ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 → ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
90 55 89 orim12d ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) ) )
91 19 90 mpd ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
92 91 adantr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) )
93 simpll ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐴 No 𝐴 ∈ V ) )
94 simprl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → 𝑂 ∈ On )
95 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
96 imass2 ( 𝐴 ⊆ ( 𝐴𝐵 ) → ( bday 𝐴 ) ⊆ ( bday “ ( 𝐴𝐵 ) ) )
97 95 96 ax-mp ( bday 𝐴 ) ⊆ ( bday “ ( 𝐴𝐵 ) )
98 simprr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 )
99 97 98 sstrid ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( bday 𝐴 ) ⊆ 𝑂 )
100 1 nosupbday ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday 𝐴 ) ⊆ 𝑂 ) ) → ( bday 𝑆 ) ⊆ 𝑂 )
101 93 94 99 100 syl12anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( bday 𝑆 ) ⊆ 𝑂 )
102 101 a1d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) → ( bday 𝑆 ) ⊆ 𝑂 ) )
103 102 ancld ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) )
104 df-3an ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∧ ( bday 𝑆 ) ⊆ 𝑂 ) )
105 103 104 syl6ibr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) )
106 93 9 syl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → 𝑆 No )
107 105 106 jctild ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) → ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ) )
108 simplr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐵 No 𝐵 ∈ V ) )
109 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
110 imass2 ( 𝐵 ⊆ ( 𝐴𝐵 ) → ( bday 𝐵 ) ⊆ ( bday “ ( 𝐴𝐵 ) ) )
111 109 110 ax-mp ( bday 𝐵 ) ⊆ ( bday “ ( 𝐴𝐵 ) )
112 111 98 sstrid ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( bday 𝐵 ) ⊆ 𝑂 )
113 2 noinfbday ( ( ( 𝐵 No 𝐵 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday 𝐵 ) ⊆ 𝑂 ) ) → ( bday 𝑇 ) ⊆ 𝑂 )
114 108 94 112 113 syl12anc ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( bday 𝑇 ) ⊆ 𝑂 )
115 114 a1d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) → ( bday 𝑇 ) ⊆ 𝑂 ) )
116 115 ancld ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) )
117 df-3an ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ∧ ( bday 𝑇 ) ⊆ 𝑂 ) )
118 116 117 syl6ibr ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) → ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) )
119 108 5 syl ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → 𝑇 No )
120 118 119 jctild ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) → ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) )
121 107 120 orim12d ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) ) )
122 121 3adantl3 ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) ) )
123 92 122 mpd ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 No ∧ ( ∀ 𝑎𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇 ) ⊆ 𝑂 ) ) ) )