Metamath Proof Explorer


Theorem nosupno

Description: The next several theorems deal with a surreal "supremum". This surreal will ultimately be shown to bound A below and bound the restriction of any surreal above. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Hypothesis nosupno.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion nosupno ( ( 𝐴 No 𝐴𝑉 ) → 𝑆 No )

Proof

Step Hyp Ref Expression
1 nosupno.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 iftrue ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
4 3 adantr ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
5 simprl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → 𝐴 No )
6 simpl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
7 nomaxmo ( 𝐴 No → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
8 7 ad2antrl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
9 reu5 ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
10 6 8 9 sylanbrc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
11 riotacl ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 )
12 10 11 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 )
13 5 12 sseldd ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No )
14 2on 2o ∈ On
15 14 elexi 2o ∈ V
16 15 prid2 2o ∈ { 1o , 2o }
17 16 noextend ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No )
18 13 17 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No )
19 4 18 eqeltrd ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) ∈ No )
20 iffalse ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
21 20 adantr ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
22 funmpt Fun ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) )
23 22 a1i ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → Fun ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
24 iotaex ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ∈ V
25 eqid ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) )
26 24 25 dmmpti dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) = { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) }
27 ssel2 ( ( 𝐴 No 𝑢𝐴 ) → 𝑢 No )
28 nodmon ( 𝑢 No → dom 𝑢 ∈ On )
29 27 28 syl ( ( 𝐴 No 𝑢𝐴 ) → dom 𝑢 ∈ On )
30 onss ( dom 𝑢 ∈ On → dom 𝑢 ⊆ On )
31 29 30 syl ( ( 𝐴 No 𝑢𝐴 ) → dom 𝑢 ⊆ On )
32 31 sseld ( ( 𝐴 No 𝑢𝐴 ) → ( 𝑦 ∈ dom 𝑢𝑦 ∈ On ) )
33 32 adantrd ( ( 𝐴 No 𝑢𝐴 ) → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → 𝑦 ∈ On ) )
34 33 rexlimdva ( 𝐴 No → ( ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → 𝑦 ∈ On ) )
35 34 abssdv ( 𝐴 No → { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ On )
36 simplr ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → 𝑎𝑏 )
37 29 adantlr ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → dom 𝑢 ∈ On )
38 ontr1 ( dom 𝑢 ∈ On → ( ( 𝑎𝑏𝑏 ∈ dom 𝑢 ) → 𝑎 ∈ dom 𝑢 ) )
39 37 38 syl ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → ( ( 𝑎𝑏𝑏 ∈ dom 𝑢 ) → 𝑎 ∈ dom 𝑢 ) )
40 36 39 mpand ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → ( 𝑏 ∈ dom 𝑢𝑎 ∈ dom 𝑢 ) )
41 40 adantrd ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → ( ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) → 𝑎 ∈ dom 𝑢 ) )
42 reseq1 ( ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) → ( ( 𝑢 ↾ suc 𝑏 ) ↾ suc 𝑎 ) = ( ( 𝑣 ↾ suc 𝑏 ) ↾ suc 𝑎 ) )
43 onelon ( ( dom 𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢 ) → 𝑏 ∈ On )
44 37 43 sylan ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → 𝑏 ∈ On )
45 suceloni ( 𝑏 ∈ On → suc 𝑏 ∈ On )
46 44 45 syl ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → suc 𝑏 ∈ On )
47 simpllr ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → 𝑎𝑏 )
48 eloni ( 𝑏 ∈ On → Ord 𝑏 )
49 44 48 syl ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → Ord 𝑏 )
50 ordsucelsuc ( Ord 𝑏 → ( 𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏 ) )
51 49 50 syl ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( 𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏 ) )
52 47 51 mpbid ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → suc 𝑎 ∈ suc 𝑏 )
53 onelss ( suc 𝑏 ∈ On → ( suc 𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏 ) )
54 46 52 53 sylc ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → suc 𝑎 ⊆ suc 𝑏 )
55 54 resabs1d ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ( 𝑢 ↾ suc 𝑏 ) ↾ suc 𝑎 ) = ( 𝑢 ↾ suc 𝑎 ) )
56 54 resabs1d ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ( 𝑣 ↾ suc 𝑏 ) ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) )
57 55 56 eqeq12d ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ( ( 𝑢 ↾ suc 𝑏 ) ↾ suc 𝑎 ) = ( ( 𝑣 ↾ suc 𝑏 ) ↾ suc 𝑎 ) ↔ ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) )
58 42 57 syl5ib ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) )
59 58 imim2d ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) → ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
60 59 ralimdv ( ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) ∧ 𝑏 ∈ dom 𝑢 ) → ( ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) → ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
61 60 expimpd ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → ( ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) → ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
62 41 61 jcad ( ( ( 𝐴 No 𝑎𝑏 ) ∧ 𝑢𝐴 ) → ( ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) → ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) ) )
63 62 reximdva ( ( 𝐴 No 𝑎𝑏 ) → ( ∃ 𝑢𝐴 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) → ∃ 𝑢𝐴 ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) ) )
64 63 expimpd ( 𝐴 No → ( ( 𝑎𝑏 ∧ ∃ 𝑢𝐴 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) → ∃ 𝑢𝐴 ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) ) )
65 vex 𝑏 ∈ V
66 eleq1w ( 𝑦 = 𝑏 → ( 𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢 ) )
67 suceq ( 𝑦 = 𝑏 → suc 𝑦 = suc 𝑏 )
68 67 reseq2d ( 𝑦 = 𝑏 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝑏 ) )
69 67 reseq2d ( 𝑦 = 𝑏 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑏 ) )
70 68 69 eqeq12d ( 𝑦 = 𝑏 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) )
71 70 imbi2d ( 𝑦 = 𝑏 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) )
72 71 ralbidv ( 𝑦 = 𝑏 → ( ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) )
73 66 72 anbi12d ( 𝑦 = 𝑏 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) )
74 73 rexbidv ( 𝑦 = 𝑏 → ( ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢𝐴 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) )
75 65 74 elab ( 𝑏 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑢𝐴 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) )
76 75 anbi2i ( ( 𝑎𝑏𝑏 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) ↔ ( 𝑎𝑏 ∧ ∃ 𝑢𝐴 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) )
77 vex 𝑎 ∈ V
78 eleq1w ( 𝑦 = 𝑎 → ( 𝑦 ∈ dom 𝑢𝑎 ∈ dom 𝑢 ) )
79 suceq ( 𝑦 = 𝑎 → suc 𝑦 = suc 𝑎 )
80 79 reseq2d ( 𝑦 = 𝑎 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝑎 ) )
81 79 reseq2d ( 𝑦 = 𝑎 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑎 ) )
82 80 81 eqeq12d ( 𝑦 = 𝑎 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) )
83 82 imbi2d ( 𝑦 = 𝑎 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
84 83 ralbidv ( 𝑦 = 𝑎 → ( ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
85 78 84 anbi12d ( 𝑦 = 𝑎 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) ) )
86 85 rexbidv ( 𝑦 = 𝑎 → ( ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢𝐴 ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) ) )
87 77 86 elab ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑢𝐴 ( 𝑎 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑎 ) = ( 𝑣 ↾ suc 𝑎 ) ) ) )
88 64 76 87 3imtr4g ( 𝐴 No → ( ( 𝑎𝑏𝑏 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) → 𝑎 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
89 88 alrimivv ( 𝐴 No → ∀ 𝑎𝑏 ( ( 𝑎𝑏𝑏 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) → 𝑎 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
90 dftr2 ( Tr { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∀ 𝑎𝑏 ( ( 𝑎𝑏𝑏 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) → 𝑎 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
91 89 90 sylibr ( 𝐴 No → Tr { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } )
92 dford5 ( Ord { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ( { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ On ∧ Tr { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
93 35 91 92 sylanbrc ( 𝐴 No → Ord { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } )
94 93 adantr ( ( 𝐴 No 𝐴 ∈ V ) → Ord { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } )
95 bdayfo bday : No onto→ On
96 fofun ( bday : No onto→ On → Fun bday )
97 95 96 ax-mp Fun bday
98 funimaexg ( ( Fun bday 𝐴 ∈ V ) → ( bday 𝐴 ) ∈ V )
99 97 98 mpan ( 𝐴 ∈ V → ( bday 𝐴 ) ∈ V )
100 99 uniexd ( 𝐴 ∈ V → ( bday 𝐴 ) ∈ V )
101 100 adantl ( ( 𝐴 No 𝐴 ∈ V ) → ( bday 𝐴 ) ∈ V )
102 simpl ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → 𝑦 ∈ dom 𝑢 )
103 102 reximi ( ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → ∃ 𝑢𝐴 𝑦 ∈ dom 𝑢 )
104 103 ss2abi { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ { 𝑦 ∣ ∃ 𝑢𝐴 𝑦 ∈ dom 𝑢 }
105 bdayval ( 𝑢 No → ( bday 𝑢 ) = dom 𝑢 )
106 27 105 syl ( ( 𝐴 No 𝑢𝐴 ) → ( bday 𝑢 ) = dom 𝑢 )
107 fofn ( bday : No onto→ On → bday Fn No )
108 95 107 ax-mp bday Fn No
109 fnfvima ( ( bday Fn No 𝐴 No 𝑢𝐴 ) → ( bday 𝑢 ) ∈ ( bday 𝐴 ) )
110 108 109 mp3an1 ( ( 𝐴 No 𝑢𝐴 ) → ( bday 𝑢 ) ∈ ( bday 𝐴 ) )
111 106 110 eqeltrrd ( ( 𝐴 No 𝑢𝐴 ) → dom 𝑢 ∈ ( bday 𝐴 ) )
112 elssuni ( dom 𝑢 ∈ ( bday 𝐴 ) → dom 𝑢 ( bday 𝐴 ) )
113 111 112 syl ( ( 𝐴 No 𝑢𝐴 ) → dom 𝑢 ( bday 𝐴 ) )
114 113 sseld ( ( 𝐴 No 𝑢𝐴 ) → ( 𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴 ) ) )
115 114 rexlimdva ( 𝐴 No → ( ∃ 𝑢𝐴 𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴 ) ) )
116 115 abssdv ( 𝐴 No → { 𝑦 ∣ ∃ 𝑢𝐴 𝑦 ∈ dom 𝑢 } ⊆ ( bday 𝐴 ) )
117 116 adantr ( ( 𝐴 No 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑢𝐴 𝑦 ∈ dom 𝑢 } ⊆ ( bday 𝐴 ) )
118 104 117 sstrid ( ( 𝐴 No 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ ( bday 𝐴 ) )
119 101 118 ssexd ( ( 𝐴 No 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ∈ V )
120 elong ( { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ∈ V → ( { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ∈ On ↔ Ord { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
121 119 120 syl ( ( 𝐴 No 𝐴 ∈ V ) → ( { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ∈ On ↔ Ord { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) )
122 94 121 mpbird ( ( 𝐴 No 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ∈ On )
123 26 122 eqeltrid ( ( 𝐴 No 𝐴 ∈ V ) → dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∈ On )
124 123 adantl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∈ On )
125 25 rnmpt ran ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) }
126 vex 𝑔 ∈ V
127 eleq1w ( 𝑦 = 𝑔 → ( 𝑦 ∈ dom 𝑢𝑔 ∈ dom 𝑢 ) )
128 suceq ( 𝑦 = 𝑔 → suc 𝑦 = suc 𝑔 )
129 128 reseq2d ( 𝑦 = 𝑔 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝑔 ) )
130 128 reseq2d ( 𝑦 = 𝑔 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑔 ) )
131 129 130 eqeq12d ( 𝑦 = 𝑔 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) )
132 131 imbi2d ( 𝑦 = 𝑔 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) )
133 132 ralbidv ( 𝑦 = 𝑔 → ( ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) )
134 127 133 anbi12d ( 𝑦 = 𝑔 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) )
135 134 rexbidv ( 𝑦 = 𝑔 → ( ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) )
136 126 135 elab ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) )
137 eqid ( 𝑢𝑔 ) = ( 𝑢𝑔 )
138 fvex ( 𝑢𝑔 ) ∈ V
139 eqeq2 ( 𝑥 = ( 𝑢𝑔 ) → ( ( 𝑢𝑔 ) = 𝑥 ↔ ( 𝑢𝑔 ) = ( 𝑢𝑔 ) ) )
140 139 3anbi3d ( 𝑥 = ( 𝑢𝑔 ) → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ↔ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = ( 𝑢𝑔 ) ) ) )
141 138 140 spcev ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = ( 𝑢𝑔 ) ) → ∃ 𝑥 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
142 137 141 mp3an3 ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) → ∃ 𝑥 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
143 142 reximi ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) → ∃ 𝑢𝐴𝑥 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
144 rexcom4 ( ∃ 𝑢𝐴𝑥 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ↔ ∃ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
145 143 144 sylib ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) → ∃ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
146 145 adantl ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ∃ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
147 nosupprefixmo ( 𝐴 No → ∃* 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
148 147 adantr ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ∃* 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
149 df-eu ( ∃! 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ↔ ( ∃ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ∧ ∃* 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) )
150 146 148 149 sylanbrc ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ∃! 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
151 vex 𝑧 ∈ V
152 eqeq2 ( 𝑥 = 𝑧 → ( ( 𝑢𝑔 ) = 𝑥 ↔ ( 𝑢𝑔 ) = 𝑧 ) )
153 152 3anbi3d ( 𝑥 = 𝑧 → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ↔ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) )
154 153 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ↔ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) )
155 154 iota2 ( ( 𝑧 ∈ V ∧ ∃! 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ↔ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) = 𝑧 ) )
156 151 155 mpan ( ∃! 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ↔ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) = 𝑧 ) )
157 150 156 syl ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ↔ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) = 𝑧 ) )
158 eqcom ( ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) = 𝑧𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) )
159 157 158 bitrdi ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ↔ 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
160 simprr3 ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → ( 𝑢𝑔 ) = 𝑧 )
161 27 adantrr ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → 𝑢 No )
162 norn ( 𝑢 No → ran 𝑢 ⊆ { 1o , 2o } )
163 161 162 syl ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → ran 𝑢 ⊆ { 1o , 2o } )
164 nofun ( 𝑢 No → Fun 𝑢 )
165 161 164 syl ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → Fun 𝑢 )
166 simprr1 ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → 𝑔 ∈ dom 𝑢 )
167 fvelrn ( ( Fun 𝑢𝑔 ∈ dom 𝑢 ) → ( 𝑢𝑔 ) ∈ ran 𝑢 )
168 165 166 167 syl2anc ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → ( 𝑢𝑔 ) ∈ ran 𝑢 )
169 163 168 sseldd ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → ( 𝑢𝑔 ) ∈ { 1o , 2o } )
170 160 169 eqeltrrd ( ( 𝐴 No ∧ ( 𝑢𝐴 ∧ ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) ) ) → 𝑧 ∈ { 1o , 2o } )
171 170 rexlimdvaa ( 𝐴 No → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) → 𝑧 ∈ { 1o , 2o } ) )
172 171 adantr ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑧 ) → 𝑧 ∈ { 1o , 2o } ) )
173 159 172 sylbird ( ( 𝐴 No ∧ ∃ 𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) → 𝑧 ∈ { 1o , 2o } ) )
174 136 173 sylan2b ( ( 𝐴 No 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) → ( 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) → 𝑧 ∈ { 1o , 2o } ) )
175 174 rexlimdva ( 𝐴 No → ( ∃ 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) → 𝑧 ∈ { 1o , 2o } ) )
176 175 abssdv ( 𝐴 No → { 𝑧 ∣ ∃ 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } 𝑧 = ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) } ⊆ { 1o , 2o } )
177 125 176 eqsstrid ( 𝐴 No → ran ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ⊆ { 1o , 2o } )
178 177 ad2antrl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ran ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ⊆ { 1o , 2o } )
179 elno2 ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∈ No ↔ ( Fun ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∧ dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∈ On ∧ ran ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ⊆ { 1o , 2o } ) )
180 23 124 178 179 syl3anbrc ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ∈ No )
181 21 180 eqeltrd ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ) → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) ∈ No )
182 19 181 pm2.61ian ( ( 𝐴 No 𝐴 ∈ V ) → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) ∈ No )
183 1 182 eqeltrid ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
184 2 183 sylan2 ( ( 𝐴 No 𝐴𝑉 ) → 𝑆 No )