Metamath Proof Explorer


Theorem dford5

Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)

Ref Expression
Assertion dford5 ( Ord 𝐴 ↔ ( 𝐴 ⊆ On ∧ Tr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordsson ( Ord 𝐴𝐴 ⊆ On )
2 ordtr ( Ord 𝐴 → Tr 𝐴 )
3 1 2 jca ( Ord 𝐴 → ( 𝐴 ⊆ On ∧ Tr 𝐴 ) )
4 epweon E We On
5 wess ( 𝐴 ⊆ On → ( E We On → E We 𝐴 ) )
6 4 5 mpi ( 𝐴 ⊆ On → E We 𝐴 )
7 df-ord ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) )
8 7 biimpri ( ( Tr 𝐴 ∧ E We 𝐴 ) → Ord 𝐴 )
9 8 ancoms ( ( E We 𝐴 ∧ Tr 𝐴 ) → Ord 𝐴 )
10 6 9 sylan ( ( 𝐴 ⊆ On ∧ Tr 𝐴 ) → Ord 𝐴 )
11 3 10 impbii ( Ord 𝐴 ↔ ( 𝐴 ⊆ On ∧ Tr 𝐴 ) )