Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dford5 | |- ( Ord A <-> ( A C_ On /\ Tr A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson | |- ( Ord A -> A C_ On ) |
|
2 | ordtr | |- ( Ord A -> Tr A ) |
|
3 | 1 2 | jca | |- ( Ord A -> ( A C_ On /\ Tr A ) ) |
4 | epweon | |- _E We On |
|
5 | wess | |- ( A C_ On -> ( _E We On -> _E We A ) ) |
|
6 | 4 5 | mpi | |- ( A C_ On -> _E We A ) |
7 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
8 | 7 | biimpri | |- ( ( Tr A /\ _E We A ) -> Ord A ) |
9 | 8 | ancoms | |- ( ( _E We A /\ Tr A ) -> Ord A ) |
10 | 6 9 | sylan | |- ( ( A C_ On /\ Tr A ) -> Ord A ) |
11 | 3 10 | impbii | |- ( Ord A <-> ( A C_ On /\ Tr A ) ) |