Metamath Proof Explorer


Theorem dford5

Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)

Ref Expression
Assertion dford5
|- ( Ord A <-> ( A C_ On /\ Tr A ) )

Proof

Step Hyp Ref Expression
1 ordsson
 |-  ( Ord A -> A C_ On )
2 ordtr
 |-  ( Ord A -> Tr A )
3 1 2 jca
 |-  ( Ord A -> ( A C_ On /\ Tr A ) )
4 epweon
 |-  _E We On
5 wess
 |-  ( A C_ On -> ( _E We On -> _E We A ) )
6 4 5 mpi
 |-  ( A C_ On -> _E We A )
7 df-ord
 |-  ( Ord A <-> ( Tr A /\ _E We A ) )
8 7 biimpri
 |-  ( ( Tr A /\ _E We A ) -> Ord A )
9 8 ancoms
 |-  ( ( _E We A /\ Tr A ) -> Ord A )
10 6 9 sylan
 |-  ( ( A C_ On /\ Tr A ) -> Ord A )
11 3 10 impbii
 |-  ( Ord A <-> ( A C_ On /\ Tr A ) )