Metamath Proof Explorer


Theorem nomaxmo

Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Assertion nomaxmo ( 𝑆 No → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦 )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 soss ( 𝑆 No → ( <s Or No → <s Or 𝑆 ) )
3 1 2 mpi ( 𝑆 No → <s Or 𝑆 )
4 cnvso ( <s Or 𝑆 <s Or 𝑆 )
5 3 4 sylib ( 𝑆 No <s Or 𝑆 )
6 somo ( <s Or 𝑆 → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 )
7 5 6 syl ( 𝑆 No → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 )
8 vex 𝑦 ∈ V
9 vex 𝑥 ∈ V
10 8 9 brcnv ( 𝑦 <s 𝑥𝑥 <s 𝑦 )
11 10 notbii ( ¬ 𝑦 <s 𝑥 ↔ ¬ 𝑥 <s 𝑦 )
12 11 ralbii ( ∀ 𝑦𝑆 ¬ 𝑦 <s 𝑥 ↔ ∀ 𝑦𝑆 ¬ 𝑥 <s 𝑦 )
13 12 rmobii ( ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 ↔ ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦 )
14 7 13 sylib ( 𝑆 No → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦 )