Metamath Proof Explorer


Theorem nomaxmo

Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Assertion nomaxmo S No * x S y S ¬ x < s y

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 soss S No < s Or No < s Or S
3 1 2 mpi S No < s Or S
4 cnvso < s Or S < s -1 Or S
5 3 4 sylib S No < s -1 Or S
6 somo < s -1 Or S * x S y S ¬ y < s -1 x
7 5 6 syl S No * x S y S ¬ y < s -1 x
8 vex y V
9 vex x V
10 8 9 brcnv y < s -1 x x < s y
11 10 notbii ¬ y < s -1 x ¬ x < s y
12 11 ralbii y S ¬ y < s -1 x y S ¬ x < s y
13 12 rmobii * x S y S ¬ y < s -1 x * x S y S ¬ x < s y
14 7 13 sylib S No * x S y S ¬ x < s y