Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015) (Revised by NM, 16-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | somo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |
|
2 | 1 | notbid | |
3 | 2 | rspcv | |
4 | breq1 | |
|
5 | 4 | notbid | |
6 | 5 | rspcv | |
7 | 3 6 | im2anan9 | |
8 | 7 | ancomsd | |
9 | 8 | imp | |
10 | ioran | |
|
11 | solin | |
|
12 | df-3or | |
|
13 | 11 12 | sylib | |
14 | or32 | |
|
15 | 13 14 | sylib | |
16 | 15 | ord | |
17 | 10 16 | biimtrrid | |
18 | 9 17 | syl5 | |
19 | 18 | exp4b | |
20 | 19 | pm2.43d | |
21 | 20 | ralrimivv | |
22 | breq2 | |
|
23 | 22 | notbid | |
24 | 23 | ralbidv | |
25 | 24 | rmo4 | |
26 | 21 25 | sylibr | |