Metamath Proof Explorer


Theorem somo

Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion somo ROrA*xAyA¬yRx

Proof

Step Hyp Ref Expression
1 breq1 y=xyRzxRz
2 1 notbid y=x¬yRz¬xRz
3 2 rspcv xAyA¬yRz¬xRz
4 breq1 y=zyRxzRx
5 4 notbid y=z¬yRx¬zRx
6 5 rspcv zAyA¬yRx¬zRx
7 3 6 im2anan9 xAzAyA¬yRzyA¬yRx¬xRz¬zRx
8 7 ancomsd xAzAyA¬yRxyA¬yRz¬xRz¬zRx
9 8 imp xAzAyA¬yRxyA¬yRz¬xRz¬zRx
10 ioran ¬xRzzRx¬xRz¬zRx
11 solin ROrAxAzAxRzx=zzRx
12 df-3or xRzx=zzRxxRzx=zzRx
13 11 12 sylib ROrAxAzAxRzx=zzRx
14 or32 xRzx=zzRxxRzzRxx=z
15 13 14 sylib ROrAxAzAxRzzRxx=z
16 15 ord ROrAxAzA¬xRzzRxx=z
17 10 16 biimtrrid ROrAxAzA¬xRz¬zRxx=z
18 9 17 syl5 ROrAxAzAxAzAyA¬yRxyA¬yRzx=z
19 18 exp4b ROrAxAzAxAzAyA¬yRxyA¬yRzx=z
20 19 pm2.43d ROrAxAzAyA¬yRxyA¬yRzx=z
21 20 ralrimivv ROrAxAzAyA¬yRxyA¬yRzx=z
22 breq2 x=zyRxyRz
23 22 notbid x=z¬yRx¬yRz
24 23 ralbidv x=zyA¬yRxyA¬yRz
25 24 rmo4 *xAyA¬yRxxAzAyA¬yRxyA¬yRzx=z
26 21 25 sylibr ROrA*xAyA¬yRx